Accepted Manuscript

....

Title: Advanced Fabrication and Properties of Hybrid Polyethylene Tetraphalate Fiber - Silica Aerogels from Plastic Bottle Waste

Authors: Steven Salomo, Thanh X. Nguyen, Duyen K. Le, Xiwen Zhang, Nhan Phan-Thien, Hai M. Duong

PII:	\$0927-7757(18)30684-8
DOI:	https://doi.org/10.1016/j.colsurfa.2018.08.015
Reference:	COLSUA 22730
To appear in:	Colloids and Surfaces A: Physicochem. Eng. Aspects
Received date:	10-5-2018
Revised date:	17-7-2018
Accepted date:	8-8-2018

Please cite this article as: Salomo S, Nguyen TX, Le DK, Zhang X, Phan-Thien N, Duong HM, Advanced Fabrication and Properties of Hybrid Polyethylene Tetraphalate Fiber - Silica Aerogels from Plastic Bottle Waste, *Colloids and Surfaces A: Physicochemical and Engineering Aspects* (2018), https://doi.org/10.1016/j.colsurfa.2018.08.015

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Advanced Fabrication and Properties of Hybrid Polyethylene Tetraphalate

Fiber - Silica Aerogels from Plastic Bottle Waste

Steven Salomo¹, Thanh X. Nguyen¹, Duyen K. Le¹, Xiwen Zhang², Nhan Phan-Thien¹, Hai

M. Duong^{1*}

¹Department of Mechanical Engineering, National University of Singapore, Singapore ²Singapore

Institute of Manufacturing Technology (SIMTech), A*STAR, Singapore

*Corresponding email: mpedhm@nus.edu.sg

GRAPHIC ABSTRACT

HIGHLIGHTS

- rPET-silica aerogels are successfully developed from plastic bottle waste
- Ultra-low thermal conductivity and high thermal stability
- Very low compressive Young's Modulus and very soft
- Fabrication method can be scaled up for industrial applications

Abstract

Recycled polyethylene tetraphalate (rPET) fiber - silica aerogels are successfully developed from rPET fibers obtained from PET plastic bottle waste and tetraethoxysilane (TEOS). The rPET -

Download English Version:

https://daneshyari.com/en/article/6977115

Download Persian Version:

https://daneshyari.com/article/6977115

Daneshyari.com