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A B S T R A C T

The theory of diffusion of both nonionic and ionic surfactants in micellar systems is extended to the case with
variable aggregation numbers. General relationships for the mobility and diffusion coefficient of surfactants are
derived, and their dependence on the aggregation number variability is analyzed. Theoretical reasoning is
supplemented by numerical calculations on the example of the sodium dodecyl sulfate micellar solution. It is
shown that the effect of the aggregation number variability can be significant even for spherical micelles when
investigating the surfactant diffusion in the vicinity of the critical micelle concentration.

1. Introduction

Micelles of colloidal surfactants are typical nanostructures about
4 nm in size and larger. They arise spontaneously in surfactant solutions
at attaining a certain concentration (strictly speaking, within a narrow
concentration range) called the critical micelle concentration (CMC). In
contrast with embryos of a new phase, micelles are not only equilibrium
but stable. Among micellization theories, the phase separation

approach [1] looks rather crude although suitable for some calcula-
tions. It was more successful the quasi-chemical approach [2–6]. It
considers an aggregation process like a chemical reaction with the
Gibbs equilibrium condition

∑=μ n μ ,
i

i iM
(1)

where μ is chemical potential, M is the chemical symbol of a micelle, i is
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an ordinal number of species forming the micelle, and ni is the ag-
gregation number (the number of particles of sort i in a micelle). The
standard expression for the chemical potential reads

= +μ μ kT cfln( ),s (2)

where μs is the standard part of μ, k is the Boltzmann constant, T is
temperature, c is concentration (the number of particles per unit vo-
lume), and f is the activity coefficient. Putting Eq. (2) for μM and μi into
Eq. (1) yields a general formulation of the mass action law

∏=c f K c f( ) ,a
i

i i
n

M M
i

(3)

where Ka is a constant of the mass action law in terms of activities, ni is
the aggregation number (the number of particles of sort i in a micelle),
the subscript i referring to the monomeric form of a surfactant. Since
micellization typically occurs at small concentrations, it is convenient
to write the mass action law in the ideal form as

∏=c K c ,
i

i
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M
i

(4)

where K is a constant of the mass action law in terms of concentrations.
Expressing the concentrations in the CMC units simplifies Eq. (4) to the
form [7]

∏=c c ,
i
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i

(5)

where the mass-action-law constant disappears. The theory of micelli-
zation is based on the joint consideration of the mass action law, Eqs.
(3)–(5), and the material balance condition

= +c c n cit i i M (6)

where cit is the total number of particles of sort i, and only one kind of
micelles is supposed for the sake of simplicity.

Considering aggregation numbers to be constants (similarly to
stoichiometric coefficients in chemistry), Eqs. (3)–(5) are sufficient for
the calculation of ci and cM as functions of the total surfactant (or a
surfactant mixture) concentration [8,9]. However, thermodynamics
requires aggregation numbers to be increasing functions of concentra-
tion [6,10,11]. The function kind depends on the micelle structure,
which is a consequence of the surfactant molecular structure and is
purely individual. Among polymorphous modifications of micelles,
spherical micelles are the simplest. After forming a spherical micelle as
a closed surfactant monolayer (with no cavity inside), the aggregation
number can undergo an only slight increase with the surfactant con-
centration unless a polymorphous transition occurs. For a long time, the
сoncentration range of existing spherical micelles was considered in
theory as suitable for the approximation of constancy of the aggregation
number. However, the development of direct methods of measuring
aggregation numbers led to the discovery of spherical micelles with
variable aggregation numbers [12–16]. The explanation of this phe-
nomenon is simple. Depending on the molecular structure, the micelle
formation occurs as a jump for some surfactants and requires a certain
concentration range above the CMC for the others. In any case, the
concentration range with an almost constant aggregation number is
attainable, but it can happen not immediately above the CMC as it was
accepted in all theories of micellization. As for non-spherical micelles,
the variable character of their aggregation numbers is obvious.

The existing theories of micellization typically contain two kinds of
simplification: considering a micellar solution as an ideal mixture of
monomers and micelles (replacing Eq. (3) by Eq. (4)) and postulating
the constancy of the aggregation number. The movement towards the
lifting of these restrictions has already begun [11,17,18]. Among nu-
merous aspects of the theory of micellization, some relations are uni-
versal and look alike for micellar systems with constant and variable
aggregation numbers. The mass action law is the most popular example.
Other relations require separate considerations for constant and

variable aggregation numbers.
The present article is devoted to the theory of diffusion in micellar

systems. The first variant of the theory was formulated as an equation
relating the total surfactant diffusion coefficient to the individual dif-
fusion coefficients of monomers and micelles with given and fixed ag-
gregation numbers [19,20]. It is of note that operating with a diffusion
coefficient is a tribute to tradition. The surfactant mobility [21,22] is a
more fundamental characteristic of diffusion. So we here will consider
mobilities and diffusion coefficients in parallel. We will see that the
theory of mobility is formulated irrespective of the constancy or
variability of aggregation numbers. By contrast, the relations for dif-
fusion coefficients with variable and constant aggregation numbers are
different. The theory will be formulated on the basis of the mass action
law, Eq. (3). This implies that diffusion occurs slowly enough to
maintain the equilibrium condition expressed in Eq. (1) in the course of
diffusion. We also postulate the constancy and uniformity of tempera-
ture and pressure to exclude thermo- and barodiffusion. We separately
consider the diffusion of nonionic and ionic surfactants. The main goal
is to see how diffusion is influenced by such a phenomenon as mi-
cellization.

2. The case of a nonionic surfactant

In the case of a single nonionic surfactant in solution, the Gibbs
equilibrium condition, Eq. (1), is simplified to the form

= =μ nμ nμ,M 1 (7)

where, as above, subscripts M and 1 refer to micelles and monomers,
respectively, and symbol μ with no subscript refers to the surfactant as a
whole. The equality of μ1 and μ could be rigorously proved for equili-
brium micellar systems [23], and this fact has been taken into account
in Eq. (7). For a single nonionic, the mass action law as Eq. (3) can be
written in terms of concentration and activity coefficient f

=c f K c f( ) .a
n

M M 1 1 (8)

The material balance condition, Eq. (6), takes the form

= +c c nc ,1 M (9)

where we use no subscript for the total surfactant concentration c.
Let us turn to equations related to diffusion. The role of mobility u is

clear from the equation

= − ∇uc μj , (10)

where j is the surfactant-flux-density vector and ∇μ is the surfactant-
chemical-potential gradient. Eq. (10) is written for a surfactant as a
whole. In more detailed presentation as the sum of the fluxes of micelles
and monomers, it yields

= + = − ∇ − ∇n u c μ u c n μj j j .1 M 1 1 1 M M M (11)

Now from Eqs. (7), (10), and (11), we obtain [21]

= +uc u c n u c1 1
2

M M (12)

or, after dividing by c,

= − +u u α nu α(1 ) ,1 M (13)

where =α nc c/M is the micellization degree.
For spherical micelles, the Stokes equation reads

= = ⎛
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(14)

where η is the surfactant solution viscosity, rM is the micelle radius, and
v is the surfactant molecule volume. If the aggregation number n is
variable, it should grow (together with α) as micellization develops. Eq.
(14) then trivially confirms a drop in the micelle mobility. Using Eq.
(14) and a similar equation for monomers approximated by spheres of
radius r ,1 Eq. (13) remarkably yields
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