

Contents lists available at ScienceDirect

Colloids and Surfaces A

Construction of TiO₂ nanobelts-Bi₂O₄ heterojunction with enhanced visible light photocatalytic activity

LLOIDS AN

Cuiqing Zhang^{a,b}, Xiaoyu Li^{a,b}, Shizheng Zheng^{a,b}, Yaya Ma^{a,b}, Changyuan Hu^{a,b,*}, Chengyu Li^{a,b}, Shuwang Duo^{a,b}, Quanhong Hu^{a,b}

^a Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
^b School of Materials and Mechanical & Electrical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China

GRAPHICAL ABSTRACT

ARTICLE INFO

ABSTRACT

A novel TiO₂ nanobelts-Bi₂O₄ (TB) type II heterojunction was constructed by a two step method. The photocurrent density of TB₁ (mass ratio, Bi₂O₄/TiO₂ = 1:1) heterostructure under visible light is up to 0.064 μ A/cm², which is about 2 times as large as that of Bi₂O₄ (0.035 μ A/cm²). In agreement well with the photocurrent, TB₁ shows a much smaller arc radius in the electrochemical impedance spectrum than Bi₂O₄ under visible light irradiation. Therefore, in the TB hybrid, the charges migration between Bi₂O₄ and TiO₂ via the heterojunction could improve the electron/hole separation efficiency and prolong the lifetime of electron and hole. In addition, TB heterostructures with much higher specific surface area than pure Bi₂O₄ could provide more active sites for the adsorption of reactant molecules. As a result, the TB heterojunctions exhibit enhanced visible light photocatalytic activity for the degradation of methyl orange and phenol than Bi₂O₄. The hole and \cdot O₂⁻ radicals were identified as the main reactive species in the photocatalysis process.

1. Introduction

Since Fujishima and Honda discovered the photoelectrocatalysis behavior of TiO_2 electrode, TiO_2 -based materials have been extensively

investigated as photocatalysts [1–7]. Owing to its wide band gap, especially for anatase TiO_2 (3.2 eV), however, TiO_2 only absorbs UV light which accounts for about 4% of the entire solar spectrum. To make full use of solar light, therefore, developing visible light responsive

https://doi.org/10.1016/j.colsurfa.2018.03.063

Keywords: TiO₂ Nanobelts Bi₂O₄ Heterojunction Photocatalysis

^{*} Corresponding author at: Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China. *E-mail address:* hcy6257@163.com (C. Hu).

Received 27 January 2018; Received in revised form 25 March 2018; Accepted 28 March 2018 Available online 31 March 2018 0927-7757/ © 2018 Elsevier B.V. All rights reserved.

photocatalysts with narrow band gap has attracted much attention in recent years [8–14]. Bismuth-containing oxides are recognized as promising materials for their narrow band gap derived from the interaction between 6 s Bi and 2p O orbitals at the top of the valence band [15]. It has been demonstrated that Bi_2O_3 [16], $CuBi_2O_4$ [17], BiOX (X = Cl, Br, I) [18], $Bi_2Ti_2O_7$ [19], $KBiO_3$ and $NaBiO_3$, have shown excellent photocatalytic activity under visible light. Up to date, most of reported bismuth-based oxides were mainly focused on Bi^{3+} or Bi^{5+} -containing oxides, however, bismuth oxides with mixed valent states have rarely been reported.

Hameed firstly investigated the photocatalytic performance of $Bi_2O_{4,v}$ with mixed valent states. It was found that $Bi_2O_{4,v}$ exhibited good performance for the degradation of phenol. Furthermore, a much higher degradation rate was observed for Bi2O3/Bi2O4-x nanocomposite synthesized by irradiation of Bi2O3 with 450 W medium pressure mercury vapor lamp in the aqueous medium, compared to pure Bi₂O₃ [9]. Recently, Hameed further reported sunlight induced formation of Bi₂O_{4-x} species on the surface of Bi₂O₃ also exhibited enhanced photocatalytic activity for the degradation and mineralization of 2-chloro and 2-nitrophenol [20]. It is deemed that the formation of a trace amount of Bi₂O_{4-x} phase on the surface of Bi₂O₃ favor the visible light harvesting and photocatalytic activity improvement. NaBiO₃, a pentavalent bismuthate with a band gap of 2.6 eV, is an alternative promising visible light responded photocatalyst [21]. However, its photocatalytic activity is expected to be further improved to satisfy the practical application. Ding et al. developed a facile method to realize the controllable $\mathrm{Bi}^{3\,+}$ self-doping NaBiO_3 photocatalyst via acidic hydrolysis of NaBiO₃·2H₂O in inorganic acid aqueous solutions such as HNO₃ or HCl. In comparison with NaBiO₃, the Bi³⁺ self-doped NaBiO₃ exhibited much higher photocatalytic removal efficiency for rhodamine B and bisphenol A under visible light illumination, resulting from the extended response range of visible light and the superior separation efficiency of photogenerated h^+/e^- pairs [22]. These results indicate strongly bismuth oxides with mixed valence may be a desirable candidate for photocatalytic applications under visible light.

Inspired by the previous works, Wang et al. [23] revealed the physicochemical and photocatalytic performance of monoclinic dibismuth tetraoxide (Bi_2O_4), with the formula of $Bi^{3+}Bi^{5+}O_4$, which was firstly prepared by Kumada et al. [24], but its application as photocatalyst was not studied previously. Theoretical calculation and experimental results indicated that Bi₂O₄ has band gap energy of 2.0 eV, and the response wavelength can be up to 620 nm. Furthermore, this Bi₂O₄ exhibited favorable activity for the degradation of typical dyes such as rhodamine B, methyl orange, and methyl blue, as well as colorless aromatic compounds including phenol and 4-nitrophenol. However, the fast charges recombination in Bi₂O₄ under visible light results in the loss of photocatalytic activity [25,26]. In order to develop Bi₂O₄ as a promising photocatalyst with high activity for versatile pollutant degradation under visible light, it is highly desirable to decrease the recombination probability of photoinduced charge carriers and enhance the photocatalytic ability.

Construction of heterostructured hybrid by coupling two or more components with matched band edge potential is generally regarded as an effective strategy to promote the charges separation and enhance photocatalytic activity of photocatalysts. For the case of Bi_2O_4 , up to date, heterostructured composites such as Bi_2O_4/Fe_3O_4 , $Bi_2O_4/BiOBr$ and g-C₃N₄/Bi₂O₄ exhibited enhanced visible light photocatalytic activity on account of the improved separation efficiency of electron-hole pairs [25,27–30]. The edge potential of the valence-band maximum (VBM) of Bi_2O_4 is less positive while the conduction-band minimum (CBM) is more negative than that of TiO₂ [23,31]. Thus, combination of TiO₂ with Bi_2O_4 could have a staggered gap (Type II) offset, forming type II heterojunction. Under visible light excitation, this heterojunction effect will drive the photoinduced electrons of Bi_2O_4 to move to the conduction band of TiO₂, while the photogenerated holes of Bi_2O_4 will be still reserved in the valence band of Bi_2O_4 due to its less positive potential of valence band, resulting in highly efficient separation of electron-hole pairs. However, there have been no reports on Bi_2O_4 -TiO₂ heterojunction photocatalysts up to now except our work. Recently, we synthesized core-shell structured Bi_2O_4 @TiO₂ heterojunction with obviously enhanced visible light photocatalytic activity [26]. Nevertheless, it is hard to control the reaction kinetics for heterogeneous nucleation and the growth of TiO₂ on Bi_2O_4 because of titanium precursors with great reactivity [26,32].

In this work, a novel TiO2 nanobelts-Bi2O4 heterojunction was designed and prepared by a two-step method. Firstly, TiO₂ nanobelts were synthesized by a simple hydrothermal procedure followed by acid corrosion treatment, using TiO₂ (P25) as raw materials. Then, one-pot hydrothermal method was used to fabricate TiO₂ nanobelts-Bi₂O₄ heterojunction. Compared with Bi2O4, the obviously enhanced photocurrent density and notably decreased arc radius in the electrochemical impedance spectrum of TiO₂ nanobelts-Bi₂O₄ heterostructure under visible light irradiation, prove a much lower recombination probability and a much higher separation efficiency of the electron-hole pairs at the TiO₂/Bi₂O₄ interface. In addition, TiO₂ nanobelts-Bi₂O₄ heterostructure with higher specific surface area could provide more active sites for the adsorption of reactant molecules. As a result, the TiO₂ nanobelts-Bi2O4 heterojunctions exhibit enhanced visible light photocatalytic activity for the removal of methyl orange and phenol than Bi_2O_4 . The hole and $\cdot O_2^{-}$ were identified as the main reactive species in the photocatalysis process.

2. Experimental

2.1. Synthesis of TiO₂ nanobelts

Typically, 0.3 g TiO₂ powder (P25) was dispersed into 60 mL 10 M NaOH aqueous solution under violent stirring, and then transferred into a 100 mL Teflon-lined stainless steel autoclave, hydrothermally treated at 180 °C for 48 h. After cooled naturally to room temperature, the precipitate was washed to neutral with plenty of deionized water. The obtained wet powder was immersed in 0.01 M HCl for 36 h and then thoroughly washed with deionized water. Then, the obtained sample was dispersed in 0.02 M H_2SO_4 aqueous solution and maintained at 100 °C for 12 h. After that, the products were filtered and washed to remove any impurities, and dried at 70 °C overnight. Finally, the acid-corroded products were calcined at 600 °C for 2 h to obtain anatase TiO₂ nanobelts [33].

2.2. Preparation of TiO₂ nanobelts-Bi₂O₄ heterojunction

TiO₂ nanobelts-Bi₂O₄ heterojunction was prepared by hydrothermal method [23]. In a typical synthesis, a certain amount of TiO₂ nanobelts and sodium bismuthate were dispersed in 60 mL deionized water and stirred for 30 min. The mixed precursor suspension was sealed into an autoclave and heated at 160 °C for 12 h. After cooling down naturally, the resultant product was filtrated and washed with deionized water for three times. At last, the as-prepared powers were dried at 60 °C overnight and named as TB_x, where *x* means the mass ratio of Bi₂O₄ to TiO₂. As a control, the physical mixture of TiO₂ nanobelts in a mass ratio of 1:1 and ground in a mortar for 30 min. As-prepared physical mixture of TiO₂ nanobelts and Bi₂O₄ was named as TB_{p1}.

2.3. Characterization

The phase structure of the prepared samples was measured by the Xray powder diffraction technique using a Rigaku X-ray diffractometer. The morphology characteristics of samples were observed by fieldemission scanning electron microscopy (FE-SEM, Zeiss, Sigma) and JEM 2100 transmission electron microscope (TEM). Specific surface areas were obtained by using Quantachrome ASIQM000-200-6 automated Download English Version:

https://daneshyari.com/en/article/6977467

Download Persian Version:

https://daneshyari.com/article/6977467

Daneshyari.com