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1. Introduction

Let us consider a multi-input/multi-output, linear-time-
invariant, discrete-time system represented by the state-space
equations

x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k) + Du(k) (1)

where x(k) € R", u(k) € R™, and y(k) € RP are respectively the
state, the input, and the output of the system. Here, the sets of the
real and the complex numbers are denoted by Rand C, respectively.
The transfer function of the system in Eq. (1) denoted by G(z) is
calculated as

Giz) =D+ C(d, —A)'B (2)

where I, is the n x n identity matrix. We assume that the system
in Eq. (1) is stable and the pairs (A, B) and (C, A) are controllable
and observable, respectively. The stability of the system in Eq.
(1) means that G(z) is a proper rational matrix that is analytic
and bounded in the region {z € C : |z| > 1} and both the
controllability and the observability of the pairs (A, B) and (C, A)
mean that (A, B, C, D) is a minimal realization of G(z).
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In this paper, we study the problem of identifying G(z) from its
N noise-corrupted samples on the unit circle:

Gk =GE“) +mn, k=1,...,N. (3)

We require algorithms recovering G(z) be strongly consistent and
interpolatory. Recall that an algorithm producing the true model
from a finite amount of data when the noise is zero is called
interpolatory. Strong consistency is a most natural requirement for
any useful algorithm: as the amount of data increases, the estimate
should improve and asymptotically the correct model should be
obtained. In practice, any algorithm will have to use a finite amount
of data. Interpolation property is particularly important for lightly
damped systems (McKelvey, Akcay, & Ljung, 1996a,b).

In McKelvey et al. (1996a), two subspace identification
algorithms, which are both strongly consistent and interpolatory,
were developed. The first algorithm uses uniformly spaced
frequency response data and the noise is required only to have
bounded moments of order two. The second algorithm uses non-
uniformly spaced frequency response data and strong consistency
is achieved under more restrictive assumptions: the noise has
bounded moments of order four and its covariance function be
known a priori. The purpose of the paper is to relax the latter
convergence requirements when the frequency response data are
given on non-uniform grids of frequencies.

In McKelvey (1997), a frequency-domain subspace algorithm
based on the instrumental variables technique (Séderstrdom &
Stoica, 1989) was developed. This algorithm is consistent without
requiring the knowledge of the noise covariance matrix provided
that a certain rank constraint is satisfied. A similar technique was
used in the time-domain subspace algorithms in Verhaegen (1993,
1994). More recently in Pintelon (2002), asymptotic properties of


http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:huakcay@anadolu.edu.tr
http://dx.doi.org/10.1016/j.automatica.2009.11.009

376 H. Akgay / Automatica 46 (2010) 375-382

the subspace identification algorithms in McKelvey et al. (1996a)
and Van Overschee and De Moor (1996) were studied when the
true noise covariance matrix is replaced by the sample noise
covariance obtained from independent repeated experiments.

The current paper was motivated from time delay estima-
tion problem. Time delay estimation between signals acquired
by different sensors is intrinsic in many signal processing prob-
lems (Carter, 1983). In frequency-domain, single delay estima-
tion amounts to recovering a scalar transfer function from phase
measurements. When the corruptions in the phase data are
independent, the latter problem can be viewed as estimating a
rational function from independent frequency response measure-
ments with the noise covariance scaled by the squared-magnitude
of the unknown transfer function. Strong consistency will not be
achieved by parametric identification techniques unless the noise
and the system transfer functions are jointly parameterized. On
the other hand, when the phase data are given on equidistant fre-
quencies, strong consistency can be achieved by the subspace tech-
niques. The details can be found in Akgay (in press).

This paper is organized as follows. In Section 2, first the basic
equations used by the frequency-domain subspace algorithms are
developed. Then, an instrumental variable subspace algorithm
is proposed. A key role in designing an instrumental variable
is played by the well-known QR-decomposition of an extended
Vandermonde matrix constructed from complex exponentials on
the unit circle. Next, the noise and the frequency assumptions are
put forward and an instrumental variable identification algorithm
is outlined. It is shown that the proposed algorithm is both strongly
consistent and interpolatory if the frequencies are in one-to-one
correspondence with the uniformly spaced frequencies on the unit
circle. The interpolation property of this algorithm is not explicit.
Then, the QR-decomposition is applied to a full-size Vandermonde
matrix yielding explicit interpolation relation between the number
of the data and the model order. In Section 3, the properties of
the studied algorithms are illustrated by means of a simulation
example. Section 4 concludes the paper.

1.1. Notation

Let %(X) and I(X), XT, X, and X" denote respectively the real
and the imaginary parts, the transpose, the complex conjugate,
and the complex conjugate transpose of a given matrix X. The
kth largest singular value of X is denoted by oy (X). The Frobenius
and the sup or max norms of X are defined respectively by

IXIF = /2 ki Xeil? and [[X[loo = maxy [X|. When X is of

full-column rank, its Moore-Penrose pseudo-inverse is defined by
Xt = (XTX)~'XT. The Kronecker product of X and Y are denoted
by X ® Y. Adopting the MATLAB notation, Y (r, :) and Y (:, k) will
denote respectively the rth (block) row and the kth (block) column
of a given (block) matrix Y. The supremum norm of a complex
transfer matrix with bounded elements on the unit circle is defined
by [|Glleec = sup,.go1G(e®). Given a set S, its cardinality is
denoted by R(S). We set z; = el® for k = 1, ..., N and, without
loss of generality, assume that the frequencies satisfy w; < wy, <
WN. Let

M =28({z, : zx ¢R}) + N({zx : zx € R}). (4)

The notation y = O(x) means that |y/x| is asymptotically bounded.
The expected value of a given random variable x is denoted by E[x].
The Kronecker delta is denoted by Jjs.

2. An instrumental variable subspace identification algorithm

By shifting G(z) in Eq. (2) q samples forward, using Eq. (1)
recursively with U(z) = I, and exploiting the fact that the
system described by Eq. (1) has a real-valued impulse response,
the following formula

G=0gX+TW+N (5)

can be derived as in McKelvey et al. (1996a) where q is a fixed
design variable to be specified later and
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The term I"'W, in Eq. (5) can be removed by the use of the
orthogonal projection matrix onto the null-space of W,:

My = by — W, (WgW])™'W, (17)
assuming that the inverse exists. Thus,
Gy = O Xy o + Ny . (18)

The column size of ,NHN{ grows in proportion to N as N increases
and makes Algorithm 2 in McKelvey et al. (1996a) biased unless
the noise covariance information is utilized in the algorithm.
In an effort to remove this bias, without access to the noise
covariance information, it was suggested in McKelvey (1997) to
use instrumental variables in the basic subspace algorithm. An
instrumental variable denoted by Q, should satisfy the following
two properties:

ran1<(X17¢qQ2) =n, forallN > Ny (19)
for some Ny > Oandas N — oo,

IV Ty Qollr — 0 (w.p.1). (20)
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