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actor—critic methods by Konda and Tsitsiklis by using temporal difference learning in the actor and by
incorporating natural gradients. Our results extend prior empirical studies of natural actor-critic methods
by Peters, Vijayakumar and Schaal by providing the first convergence proofs and the first fully incremental
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1. Introduction

Many problems of scientific and economic importance are op-
timal sequential decision problems and as such can be formulated
as Markov decision processes (MDPs) (Bertsekas & Tsitsiklis, 1996;
Rust, 1996; White, 1993). In some cases, MDPs can be solved ana-
lytically, and in many cases they can be solved iteratively by dy-
namic programming or linear programming. However, in other
cases these methods cannot be applied either because the state
space is too large, a system model is available only as a simulator, or
no system model is available. It is in these cases that the techniques
and algorithms of reinforcement learning (RL) may be helpful.

Reinforcement learning (Bertsekas & Tsitsiklis, 1996; Sutton
& Barto, 1998) can be viewed as a broad class of sample-based
methods for solving MDPs. In place of a model, these methods use
sample trajectories of the system and the controller interacting,
such as could be obtained from a simulation. It is not unusual in
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practical applications for such a simulator to be available when
an explicit transition-probability model of the sort suitable for use
by dynamic or linear programming is not (Crites & Barto, 1998;
Tesauro, 1995). Reinforcement learning methods can also be used
with no model at all, by obtaining sample trajectories by direct
interaction with the system (Kohl & Stone, 2004; Ng et al., 2004).
One of the biggest challenges to solve MDPs with conventional
methods is handling large state (and action) spaces. This is some-
times known as the “curse of dimensionality” because of the ten-
dency of the size of a state space to grow exponentially with the
number of its dimensions. The computational effort required to
solve an MDP thus increases exponentially with the dimension
and cardinality of the state space. A natural and venerable way
of addressing the curse is to approximate the value function and
policy parametrically with a number of parameters much smaller
than the size of the state space (Bellman & Dreyfus, 1959). How-
ever a straightforward application of such function-approximation
methods to dynamic programming has not proved effective on
large problems. Some work with RL and function approximation
has also run into problems of convergence and instability (Baird,
1995; Boyan & Moore, 1995), but about a decade ago it was es-
tablished that if trajectories were sampled according to their dis-
tribution under the target policy (the on-policy distribution) then
convergence could be assured for linear feature-based function ap-
proximators (Sutton, 1996; Tadic, 2001; Tsitsiklis & Van Roy, 1997).
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Reinforcement learning’s most impressive successes have in fact
been on problems with extremely large state spaces that could not
have been solved without function approximation (Crites & Barto,
1998; Ng et al., 2004; Tesauro, 1995). The ability of sample-based
methods to use function approximation effectively is one of the
most important reasons for interest in RL within the engineering
disciplines.

Policy-gradient methods are some of the simplest RL algorithms
and provide both a good illustration of RL and a foundation for
the actor-critic methods that are the primary focus of this paper.
In policy-gradient methods, the policy is taken to be an arbitrary
differentiable function of a parameter vector € R°. Given some
performance measure | : K¢ — R, we would like to update the
policy parameter in the direction of the gradient:

A0 o Vo] (). (1)

The gradient is not directly available of course, but sample
trajectories can be used to construct unbiased estimators of it,
estimators that can be used in a stochastic approximation of
the actual gradient. This is the basic idea behind all policy-
gradient methods (Aleksandrov, Sysoyev, & Shemeneva, 1968;
Baxter & Bartlett, 2001; Bhatnagar, 2005, 2007; Ghavamzadeh
& Mahadevan, 2003; Ghavamzadeh & Engel, 2007a,b; Glynn,
1990; Konda & Tsitsiklis, 2003; Marbach & Tsitsiklis, 2001; Peters
& Schaal, 2008; Sutton, McAllester, Singh, & Mansour, 2000;
Williams, 1992). Theoretical analysis and empirical evaluations
have highlighted a major shortcoming of these algorithms, namely,
the high variance of their gradient estimates, and thus the slow
convergence and sample inefficiency.

One possible solution to this problem, proposed by Kakade
(2002) and then refined and extended by Bagnell and Schneider
(2003) and by Peters, Vijayakumar, and Schaal (2003), is based on
the idea of natural gradients previously developed for supervised
learning by Amari (1998). In the application to RL, the policy
gradient in (1) is replaced with a natural version. This is motivated
by the intuition that a change in the policy parameterization
should not influence the result of the policy update. In terms
of the policy update rule (1), the move to natural gradient
amounts to linearly transforming the gradient using the inverse
Fisher information matrix of the policy. In empirical evaluations,
natural policy gradient has sometimes been shown to outperform
conventional policy-gradient methods (Bagnell & Schneider, 2003;
Kakade, 2002; Peters et al., 2003; Richter, Aberdeen, & Yu, 2007).
Moreover, the use of natural gradients can lead to simpler, and in
some cases, more computationally efficient algorithms. Three of
the four algorithms we introduce in this paper incorporate natural
gradients.

In this paper we focus on a sub-class of policy-gradient methods
known as actor-critic algorithms. These methods can be thought
of as reinforcement learning analogs of dynamic programming’s
policy iteration method. Actor-critic methods are based on
the simultaneous online estimation of the parameters of two
structures, called the actor and the critic. The actor corresponds to
a conventional action-selection policy, mapping states to actions
in a probabilistic manner. The critic corresponds to a conventional
state-value function, mapping states to expected cumulative
future reward. Thus, the critic addresses a problem of prediction,
whereas the actor is concerned with control. These problems are
separable, but are solved simultaneously to find an optimal policy.
A variety of methods can be used to solve the prediction problem,
but the ones that have proved most effective are those based on
some form of temporal difference (TD) learning (Sutton, 1988), in
which estimates are updated on the basis of other estimates. Such
“bootstrapping methods” (Sutton & Barto, 1998) can be viewed as
a way of accelerating learning by trading bias for variance.

Actor-critic methods were among the earliest to be investi-
gated in reinforcement learning (Barto, Sutton, & Anderson, 1983;

Sutton, 1984). They were largely supplanted in the 1990s by meth-
ods that estimate action-value functions (mappings from states
and actions to the subsequent expected return) that are then used
directly to select actions without constructing an explicit policy
structure. The action-value approach was initially appealing be-
cause of its simplicity, but theoretical complications arose when
it was combined with function approximation: these methods do
not converge in the normal sense, but rather may “chatter” in the
neighborhood of a good solution (Gordon, 1995). These complica-
tions lead to renewed interest in policy-gradient methods. Policy-
gradient methods without bootstrapping can easily be proved
convergent, but can suffer from high variance resulting in slow
convergence as mentioned above, motivating their combination
with bootstrapping temporal difference methods as in actor-critic
algorithms.

In this paper we introduce four novel actor-critic algorithms
along these lines. For all four methods we prove convergence of
the parameters of the policy and state-value function to a small
neighborhood of the set of local maxima of the average reward
when the TD error inherent in the function approximation is small.
Our results are an extension of our prior work (Bhatnagar, Sutton,
Ghavamzadeh, & Lee, 2008), and of prior work on the convergence
of two-timescale stochastic approximation recursions (Abdulla
& Bhatnagar, 2007; Bhatnagar & Kumar, 2004; Konda & Borkar,
1999; Konda & Tsitsiklis, 2003). That work had previously
shown convergence to a locally optimal policy for several non-
bootstrapping algorithms with or without function approximation.
Convergence of general two-timescale stochastic approximation
algorithms has been shown under some assumptions in Borkar
(1997). Konda and Tsitsiklis (2003) have shown convergence for
an actor-critic algorithm that uses bootstrapping in the critic,
but our results are the first to prove convergence when the
actor is bootstrapping as well. Our results also extend prior two-
timescale results by incorporating natural gradients. Our results
and algorithms differ in a number of other, smaller ways from
those of Konda and Tsitsiklis; we detail these in Section 6 after the
analysis has been presented.

Two other aspects of the theoretical results presented here
should be mentioned at the outset. First, one of the issues that
arises in policy-gradient methods is the selection of a baseline
reward level. In contrast to previous work, we show that, in
an actor—critic setting when compatible features are used, the
baseline that minimizes the estimator variance for any given policy
is in fact the state-value function. Second, for the case of a fixed
policy we use a recent result by Borkar and Meyn (2000) to provide
an alternative, simpler proof of convergence (cf. Tsitsiklis & Van
Roy, 1997; Tsitsikis & Van Roy, 1999) in the Euclidean norm of TD
recursions.

In this paper we do not explicitly consider the treatment of
eligibility traces (A > 0 in TD(A) (Sutton, 1988)), which have been
shown to improve performance in cases of function approximation
or partial observability, but we believe the extension of all of
our results to general A would be straightforward. Less clear is
how or whether our results could be extended to least-squares
TD methods (Boyan, 1999; Bradtke & Barto, 1996; Farahmand,
Ghavamzadeh, Szepesvari, & Mannor, 2009; Lagoudakis & Parr,
2003). It is not clear how to satisfactorily incorporate these
methods in a context in which the policy is changing. Our proof
techniques do not immediately extend to this case and we leave it
for future work. We do consider the use of approximate advantages
as in the works of Baird (1993) and of Peters and Schaal (2008).
Because of space limitations, we do not present empirical results
obtained from our algorithms in this paper but these can be seen in
Section 8 of our technical report (Bhatnagar, Sutton, Ghavamzadeh,
& Lee, 2009).
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