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a b s t r a c t

We regard the stochastic functional differential equationwith infinite delay dx(t) = f (xt)dt+g(xt)dw(t)
as the result of the effects of stochastic perturbation to the deterministic functional differential equation
ẋ(t) = f (xt), where xt = xt(θ) ∈ C((−∞, 0];Rn) is defined by xt(θ) = x(t + θ), θ ∈ (−∞, 0].
We assume that the deterministic system with infinite delay is exponentially stable. In this paper, we
shall characterize howmuch the stochastic perturbation can bear such that the corresponding stochastic
functional differential system still remains exponentially stable.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that noise can stabilize a given unstable
system (Appleby & Mao, 2005; Appleby, Mao, & Rodkina, 2008;
Boulanger, 2000; Caraballo, Garrido-Atienza, & Real, 2003; Hu &
Mao, 2008; Khasminskii, 1981;Mao, 1997, 2007;Mao, Yin, & Yuan,
2007; Scheutzow, 1993), as well as destabilize a given stable sys-
tem (Mao, 1997; Mao et al., 2007; Scheutzow, 1993). Stochastic
systems therefore attract increasing attention in many branches
of science and industry. An area of particular interest has been the
automatic control of stochastic systems, with consequent empha-
sis being placed on the analysis of stabilization and destabilization.
Consider that a given two-dimensional exponentially stable

system

ẏ(t) = −y(t) on t ≥ 0, y(0) ∈ R2 (1)
is perturbed by noise and the stochastically perturbed system is
described by the Itô stochastic equation

dx(t) = −x(t)dt + Gx(t)dw(t), x(0) = y(0) ∈ R2 (2)
on t ≥ 0, wherew(t) is a scalar Brownian motion and G ∈ R2×2. It
has been shown that Eq. (2) has the explicit solution
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x(t) = exp
[
−

(
I +
1
2
G2
)
t + Gw(t)

]
x(0), (3)

where I represents the identity matrix. When

G =
[
0 −2
2 0

]
, (4)

we have x(t) = exp[It + Gw(t)]x(0), which implies that

lim
t→∞

log |x(t)|
t

= 1, a.s.

Clearly, the stochastically perturbed system (2) is almost surely
exponentially unstable when G is defined by (4). By (3),

x(t) ≤ exp[−It + Gw(t)] exp
(
|G|2t
2

)
|x(0)|E1

≤ exp
[
−

(
1−
|G|2

2

)
It + Gw(t)

]
|x(0)|E1,

where |G| denotes the trace norm of G and E1 = (1, 1)T. Hence, if
|G| <

√
2,

lim sup
t→∞

log |x(t)|
t

< 0, a.s.

which shows that the stochastically perturbed system (2) is still
stable. Note that G represents the intensity of stochastic perturba-
tion imposed on the system (1). This example shows that the sta-
ble systems may bear some weak stochastic noise, which implies
robustness.
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Stability plays an important role in many system control prob-
lems. However, any systems are often subject to noise perturba-
tion. Like the stochastic system (2), noise may destabilize a stable
system. It becomes therefore interesting to control noise intensity
to make it not destroy the stability of the corresponding deter-
ministic system. Robust stability of stochastic systems recently re-
ceived more and more attention (Lu, Tsai, Jong, & Su, 2003; Mao,
1992, 1996; Mao, Koroleva, & Rodkina, 1998; Yuan & Mao, 2004).
In this paper,we shall consider stochastic functional differential

equations with infinite delay and discuss the robust exponential
stability of these systems. Infinite-delay equations now receive the
increasing attention since they include many important systems,
for example, the pantograph equation in applied mathematics and
engineering (see Iserles (1993, 1997) and the references therein)
and infinite-delay Volterra equations in mathematical biology and
neural networks (for example, Teng (2002) and Zhang, Suda, and
Iwasa (2004)). Assume that we are given a general n-dimensional
functional differential equation with infinite delay

ẋ(t) = f (xt), (5)

where f = (f1, . . . , fn)T : C((−∞, 0];Rn)→ Rn and xt = xt(θ) ∈
C((−∞, 0];Rn) is defined by xt(θ) = x(t + θ), θ ∈ (−∞, 0].
Assume that (5) is stable and perturbed by noise g(xt)ẇ(t), where
ẇ(t) is an m-dimensional white noise, that is, w(t) is an m-
dimensional Brownian motion, and g = [gij] : C((−∞, 0];Rn)→
Rn×m represents noise intensity. Also assume that we are required
to control g such that the corresponding stochastic functional
differential equation with infinite delay

dx(t) = f (xt)dt + g(xt)dw(t) (6)

is also stable. For the purpose of stability, assume that f (0) =
0, g(0) = 0, which means that Eq. (6) admits a trivial solution
x(t) ≡ 0.
Section 2 gives some necessary notations and definitions. To

illustrate our idea clearly, Section 3 examines the general results
on existence of the global solution to Eq. (6) and exponential
stability of this solution. Applying the result of Section 3, we give
the conditions under which we discuss robustness of exponential
stability of the system (6) in Section 4. As applications of Section 4,
Section 5 examines two examples.

2. Preliminaries

Throughout this paper, unless otherwise specified, we use the
following notations. Let | · | be the Euclidean norm in Rn. If A is a
vector or matrix, its transpose is denoted by AT. If A is a matrix, its
trace norm is denoted by |A| =

√
trace(ATA). Let R+ = [0,∞).

Denoted by C((−∞, 0];Rn) the family of continuous functions
from (−∞, 0] to Rn. Similarly, denoted by BC((−∞, 0];Rn) the
family of bounded continuous functions from (−∞, 0] to Rn with
the norm ‖ϕ‖ = supθ≤0 |ϕ(θ)| < ∞, which forms a Banach
space. Denoted by λmin(M) the eigenvalue of the matrix M with
the smallest real part.
Let (Ω,F , P) be a complete probability space with a filtration

{Ft}t≥0 satisfying the usual conditions, that is, it is right continuous
and increasing while F0 contains all P-null sets. Let w(t) be anm-
dimensional Brownian motion defined on this probability space.
If x(t) is an Rn-valued stochastic process on t ∈ R, we let xt =
{x(t + θ) : −∞ < θ ≤ 0} for t ≥ 0. In addition, throughout this
paper, const represents a positive constant, whose precise value
or expression is not important. Let C2(Rn;R+) denote the family
of all function V (x) from Rn to R+ which are continuous twice
differentiable, and define an operator LV : C((−∞, 0];Rn)→ R
by

LV (ϕ) = Vx(ϕ(0))f (ϕ)+
1
2
trace[gT(ϕ)Vxx(ϕ(0))g(ϕ)], (7)

where

Vx(x) =
(∂V (x)
∂x1

, . . . ,
∂V (x)
∂xn

)
and

Vxx(x) =
(∂2V (x)
∂xi∂xj

)
n×n
.

LetM0 denote all probability measures µ on (−∞, 0]. For any
ε > 0, define

Mε :=

{
µ ∈M0;µε :=

∫ 0

−∞

e−εθdµ(θ) <∞
}
. (8)

Clearly, there exist many such probability measures and here we
give two examples.
(i) For any τ ∈ R+, let µ be the Dirac measure at −τ (for

definition of the Dirac measure see Kallenberg (1997, P11)). Then
for any µ ∈M0 and ε ≥ 0,

µε =

∫ 0

−∞

e−εθdµ(θ) = eετ <∞,

which implies µ ∈Mε .
(ii) Let dµ(θ) = eθdθ . Clearly,µ(θ) is a probability measure on

(−∞, 0] and for any ε ∈ (0, 1),

µε =

∫ 0

−∞

e−εθeθdθ =
1
1− ε

<∞,

which also implies µ ∈Mε for any ε ∈ (0, 1).
µε has the following nice property. We give it as a lemma.

Lemma 1. Fix ε0 > 0. For any ε ∈ (0, ε0], µε is continuously
nondecreasing and satisfies µε0 ≥ µε ≥ µ0 = 1 andMε0 ⊆ Mε ⊆

M0.

Proof. Fix θ ∈ (−∞, 0]. Clearly, e−εθ is a nondecreasing function
on ε. This implies µε is a nondecreasing function on ε and hence
µε0 ≥ µε ≥ µ0 = 1 and Mε0 ⊆ Mε ⊆ M0 since ε ∈ (0, ε0].
The Levi Theorem (see Kallenberg (1997, Theorem1.19, P11)) gives
continuity. �

Let Lp((−∞, 0];Rn) denote all functions h : (−∞, 0] → Rn

such that
∫ 0
−∞
|h(s)|pds <∞. We give the following lemma.

Lemma 2. Let ϕ ∈ BC((−∞, 0];Rn) ∩ Lp((−∞, 0];Rn) for any
p > 0. Then for any q > p, ϕ ∈ Lq((−∞, 0];Rn).

Proof. Clearly, by the definition of the norm in the space
BC((−∞, 0];Rn), we have∫ 0

−∞

|ϕ(θ)|qdθ =
∫ 0

−∞

|ϕ(θ)|p|ϕ(θ)|q−pdθ

≤ ‖ϕ‖q−p
∫ 0

−∞

|ϕ(θ)|pdθ <∞,

which is the desired assertion. �

Wealso give the boundedness property of polynomial functions
as a lemma.

Lemma 3. For any h(x) ∈ C(Rn;R), α, b > 0, if h(x) = o(|x|α) as
|x| → ∞, then

sup
x∈Rn
[h(x)− b|x|α] <∞. (9)

To examine the stability, we will also need the useful con-
vergence theorem of nonnegative semimartingales (Liptser &
Shiryaev, 1989; Mao, 1997) which we cite here as a lemma.
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