
Automatica 45 (2009) 2597–2604

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Supervisory control for real-time scheduling of periodic and sporadic tasks with
resource constraintsI

Seong-Jin Park a, Jung-Min Yang b,∗

a Department of Electrical and Computer Engineering, Ajou University, Suwon, 443-749, Korea
b Department of Electrical Engineering, Catholic University of Daegu, Kyongsan Kyongbuk, 712-702, Korea

a r t i c l e i n f o

Article history:
Received 25 August 2008
Received in revised form
21 May 2009
Accepted 7 July 2009
Available online 19 August 2009

Keywords:
Supervisory control
Timed discrete event systems
Real-time scheduling
Resource constraints
Deadlock

a b s t r a c t

In the framework of supervisory control of timed discrete event systems, this paper addresses the design
problem of a real-time scheduler that meets stringent time constraints of periodic tasks and sporadic
tasks which exclusively access shared resources. For this purpose, we present the timed discrete event
models of execution of periodic tasks and sporadic tasks and resource access for shared resources. Based
on these models, we present the notion of deadlock-free and schedulable languages that contain only
deadline-meeting sequences which do not reach deadlock states. In addition, we present the method of
systematically computing the largest deadlock-free and schedulable language, and it is also shown that
schedulability analysis can be done using this language. We further show that the real-time scheduler
achieving the largest deadlock-free and schedulable language is optimal in the sense that there are no
other schedulers to achieve schedulable cases more than those achieved by the optimal scheduler.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

A scheduler in a real-time system coordinates the execution
of tasks in order to meet their given time constraints (deadlines).
The theory of real-time scheduling has been mainly developed in
the computer science community. Two fundamental scheduling
problems can be summarized as follows: One is the schedulability
analysis problem, i.e. is it possible to meet the deadlines of given
tasks? The other is the scheduler design problem which is also
called scheduling algorithm selection problem (Liu, 2000). When
several tasks exclusively access shared resources, these scheduling
problems becomemuchmore difficult because avoiding deadlocks
should be considered together with meeting deadlines (Baruah,
2006; Fisher, Bertogna, & Baruah, 2007; Lipari & Buttazzo, 2000;
Silly-Chetto, 1999).
Recently, several researchers have shown that the real-time

schedulers can be effectively designed by synthesizing feedback
controllers (Lu, Stankovic, Tao, & Son, 2002). In particular, it has
been shown that the supervisory control theory of discrete event
systems (DESs) can be successfully applied to the design of sched-
ulers. In Altisen, Goessler, and Sifakis (2002), the scheduler design

I The material in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor George Yin under
the direction of Editor Ian R. Petersen.
∗ Corresponding author. Tel.: +82 53 850 2736; fax: +82 53 850 2704.
E-mail addresses: parksjin@ajou.ac.kr (S.-J. Park), jmyang@cu.ac.kr (J.-M. Yang).

method based on timed automata and state feedback control was
presented. The design method for the non-preemptive scheduling
of periodic tasks with deadlines was reported in Chen and Won-
ham (2002), and the scheduler synthesis method for periodic tasks
with fixed priorities was reported in Janarthanan, Gohari, and Saf-
far (2006). The scheduling problem for multiprocessors execut-
ing periodic tasks with fixed release times was also addressed in
Janarthanan and Gohari (2007). In Onogi and Ushio (2006), the
scheduling method for the non-preempting periodic tasks in dy-
namically reconfigurable devices was presented. In Park and Cho
(2008), the optimal scheduler for sporadic tasks with arbitrary re-
lease times was developed. In Park and Cho (2009), the optimal
scheduler for sporadic tasks executing on amultiprocessorwas de-
veloped in the presence of processor faults, and in Yang and Park
(2008), schedulability analysis for periodic and sporadic tasks was
done. However, the previous studies have dealt with the schedul-
ing problems without considering resource constraints.
In this paper, we address the scheduling problems of periodic

tasks and sporadic tasks with time and resource constraints using
the supervisory control theory of timed DESs. Periodic tasks are as-
sumed to be invoked with fixed periods and have no need for their
deadlines to be equivalent to their periods. Sporadic tasks are as-
sumed to be invoked with arbitrary release times and rejected or
accepted for processing. The deadlines of tasks are also assumed
to be known as constant values a priori. Under these assumptions,
we present the timed discrete event models for task execution and
resource access, and formulate the schedulability analysis prob-
lem and the design problem of optimal schedulers. To solve these

0005-1098/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2009.07.011

http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:parksjin@ajou.ac.kr
mailto:jmyang@cu.ac.kr
http://dx.doi.org/10.1016/j.automatica.2009.07.011

2598 S.-J. Park, J.-M. Yang / Automatica 45 (2009) 2597–2604

problems, we introduce the notion of a deadlock-free and schedu-
lable language composed of deadline-meeting sequenceswhich do
not reach deadlock states, and additionally provide the systematic
method of computing the largest deadlock-free and schedulable
language. We further show that the schedulability analysis prob-
lem can be solved using the language. An optimal scheduler is de-
signed in an offline manner based on the largest deadlock-free and
schedulable language, and the scheduler coordinates the execution
and resource access of tasks in an online manner upon observa-
tion of the executed sequences. In addition, the scheduler decides
whether each newly arrived sporadic task is accepted or rejected.
The scheduling problems presented in this paper are derived

from the setting of Yang and Park (2008) which does not consider
resource constraints. Specifically, the timed discrete event models
presented for periodic and sporadic tasks are extended from those
of Yang and Park (2008) through including the resource access of
tasks. In addition, we establish the timed discrete event models
for the resource access of each task and the exclusive access
constraint to each resource which are not presented in Yang and
Park (2008). Moreover, the scheduling policy presented in this
paper is different from that of Yang and Park (2008). Even though
the acceptance of a newly arrived sporadic task results in meeting
the deadlines of tasks, the scheduler of Yang and Park (2008)
may reject the arrived task. However, the scheduler presented
in this paper always accepts newly arrived sporadic tasks if the
acceptance of the tasks can lead tomeeting their deadlines. In other
words, the presented scheduler has a policy that it should process
as many tasks as possible if it can meet all the deadlines of tasks
and also avoid deadlocks.
The supervisory control approach presented in this paper for

real-time scheduling differs from the conventional approaches
by the computer science community in several aspects. While
conventional approaches separately deal with the problems of
finding the schedulability conditions (the solutions of a schedula-
bility analysis problem) and realizing the specific scheduling algo-
rithms such as EDF (Earliest Deadline First), the supervisory control
approach simultaneously solves these problems by systematically
computing a deadlock-free and schedulable language. It means
that the presented approach is more concise and efficient in for-
mulating and solving the scheduling problems. In addition, while
the conventional scheduling solutions usually result in only par-
tial execution sequences that meet deadlines and avoid deadlocks,
the presented largest deadlock-free and schedulable language is
always complete in that it contains all achievable execution se-
quences that meet deadlines and also avoid deadlocks.

2. Timed discrete event model (TDEM)

We present a new TDEM that adds the memorable events to
the TDEM framework of Brandin and Wonham (1994). In a real-
time system,when the execution of a task is preempted by another
task, the interrupted task falls into a blocked state. Since its re-
execution begins from the interrupted point generally, the task’s
timer containing the remaining time until its completion should be
maintained in the blocked state. This is the reason for introducing
the notion of memorable events in this paper.
A TDEM consists of two elements, an activity (untimed) model

and time bounds of events. First, the activity model is described by
a finite state automaton

Gact = (A,Σact , δact , a0, Am),

where A is a finite set of activities, Σact is a finite set of events,
δact : A × Σact → A is an activity transition function, a0 ∈ A is
an initial activity, and Am ⊆ A is a set of marked activities. For σ ∈
Σact , lower and upper time bounds are given as lower(σ) ∈ N and
upper(σ) ∈ N ∪ {∞}, respectively, where N denotes the set of all

nonnegative integers. Σact is partitioned into Σspe = {σ ∈ Σact |
upper(σ) ∈ N} and Σrem = {σ ∈ Σact | upper(σ) = ∞}. Σspe
(respectively,Σrem) is the set of prospective (respectively, remote)
events whose upper time bounds are finite (respectively, infinite).
In addition, we introduce a set of memorable events,Σmem ⊆ Σact .
For a memorable event not defined at a state, its timer value at the
state is maintained as its timer value at a previous state. For a non-
memorable event not defined at a state, its timer value at the state
is reset to its lower time bound or upper time bound. For σ ∈ Σact ,
its timer interval Tσ is defined as follows: Tσ = {i ∈ N | 0 ≤ i ≤
upper(σ)} if σ ∈ Σspe; Tσ = {i ∈ N | 0 ≤ i ≤ lower(σ)} if
σ ∈ Σrem.
A TDEM G is then represented by the following finite state

automaton

G = (Q ,Σ, q0, δ,Qm).

The state set Q is defined as Q = A × Π{Tσ | σ ∈ Σact}, and
a state q ∈ Q is of the form q = (a, {tσ | σ ∈ Σact}) in which
tσ is a timer of an event σ . The initial state q0 ∈ Q is defined as
q0 = (a0, {tσ ,0 | σ ∈ Σact}) where tσ ,0 = upper(σ) for σ ∈ Σspe
and tσ ,0 = lower(σ) for σ ∈ Σrem. The marked state set Qm ⊆ Q
is given by a subset of Qm = Am ×Π{Tσ | σ ∈ Σact}. The event set
Σ is defined asΣ = Σact ∪ {tick}, where tick denotes the passage
of one unit time.
By extending the framework of Brandin and Wonham (1994)

with the consideration of memorable events, we can define the
transition function δ : Q × Σ → Q as follows. Let δ(q, σ) = q′
with q = (a, {tτ | τ ∈ Σact}) and q′ = (a′, {t ′τ | τ ∈ Σact}). Then
δ(q, σ) is defined if and only if

(1) σ = tick and (∀τ ∈ Σspe) tτ > 0, or
(2) σ ∈ Σspe, δact(a, σ)!, and 0 ≤ tσ ≤ upper(σ)− lower(σ), or
(3) σ ∈ Σrem, δact(a, σ)!, and tσ = 0.

The symbol !means ‘is defined’. The entrance state q′ is defined as
follows.
(1) If σ = tick, then a′ := a and for each τ ∈ Σact ,
(a) if τ ∈ Σspe,

t ′τ :=

{uτ if [δact(a, τ) is not defined] ∧ [τ 6∈ Σmem],
tτ if [δact(a, τ) is not defined] ∧ [τ ∈ Σmem],
tτ − 1 if [δact(a, τ)!] ∧ [tτ > 0].

(b) if τ ∈ Σrem,

t ′τ :=

lτ if [δact(a, τ) is not defined] ∧ [τ 6∈ Σmem],
tτ if [δact(a, τ) is not defined] ∧ [τ ∈ Σmem],
tτ − 1 if [δact(a, τ)!] ∧ [tτ > 0],
0 if [δact(a, τ)!] ∧ [tτ = 0].

(2) If σ ∈ Σact , then a′ := δact(a, σ) and for any τ ∈ Σact ,

(a) if τ 6= σ and τ ∈ Σspe,

t ′τ :=

uτ if [δact(a′, τ) is not defined] ∧ [τ 6∈ Σmem],
tτ if [δact(a′, τ) is not defined] ∧ [τ ∈ Σmem],
tτ if δact(a′, τ)!.

(b) if τ = σ and τ ∈ Σspe, t ′τ := upper(σ).

(c) if τ 6= σ and τ ∈ Σrem,

t ′τ :=

lτ if [δact(a′, τ) is not defined] ∧ [τ 6∈ Σmem],
tτ if [δact(a′, τ) is not defined] ∧ [τ ∈ Σmem],
tτ if δact(a′, τ)!.

(d) if τ = σ and τ ∈ Σrem, t ′τ := lower(σ).
Consider a simple task of which the activity model is shown in

Fig. 1(a) where the initial activity and marked activity are denoted
by the entering arrow and double circles, respectively. The time

Download	English	Version:

https://daneshyari.com/en/article/697783

Download	Persian	Version:

https://daneshyari.com/article/697783

Daneshyari.com

https://daneshyari.com/en/article/697783
https://daneshyari.com/article/697783
https://daneshyari.com/

