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a b s t r a c t

We revisit here the Almost Disturbance Decoupling Problem (ADDP) (Willems, 1981) by state feedback
with the objective to solve ADDP and simultaneously place the maximal number of poles in the closed-
loop solution. Indeed, when ADDP is solvable, we show that, whatever be the choice of a particular
feedback solution, the obtained closed-loop system always has a set of fixed poles. We characterize these
Fixed Poles of ADDP. The other (non-fixed) poles can be placed freely, and we characterize the ‘‘optimal’’
solutions (in terms of ad hoc subspaces and feedbacks) which allow us to solve ADDPwith maximal pole
placement. From our contribution, which treats the most general case for studying ADDPwith maximal,
usually partial, pole placement, directly follow the solutions of ADDP with complete pole placement
(when there are no ADDP Fixed Poles) and ADDP with internal stability (when all the Fixed Poles of
ADDP are stable), without requiring the use of stabilizability subspaces, as in Willems (1981). We extend
the concept of Self-Bounded Controlled-Invariant Subspaces (Basile & Marro, 1992) to almost ones. An
example is proposed that illustrates our contributions.

© 2009 Published by Elsevier Ltd

1. Introduction

The almost disturbance decoupling problem (ADDP) was first
introduced inWillems (1981); it is an alternative to the traditional
disturbance decoupling problem (DDP) when this classical DDP
is not solvable. It also plays a central role in several important
problems, such as robust control, decentralized control and non-
interacting control (Lin, 1997; Saberi, Stoorvogel, & Sannuti, 2006).
It has been intensively studied in Willems (1981), Schumacher
(1984), Trentelman (1985) and Weiland and Willems (1989),
but, up until now, the question concerning pole placement in
conjunction with ADDP was still open: only stabilizability or
complete pole placement were answered. The questions about the
possible existence of fixed poles, about their locations, and about
the design of a particular solution which would place at will all the
other (non-fixed) poles were open.
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Valcher under the direction of Editor Roberto Tempo.
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E-mail addresses: runmin@gmail.com (R. Zou),

Michel.Malabre@irccyn.ec-nantes.fr (M. Malabre).
1 This workwas performedwhile the author was a Ph.D. student at IRCCyN-Ecole
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The aim of this paper is to show how to get an optimal solution
of ADDP in the sense of maximal pole placement. In fact, we
show, using the so-called geometric approach, that, there exist
some finite fixed poles in ADDP, i.e. poles which are present in the
closed-loop system after applying any state feedback solution of
ADDP. These finite fixed poles do not depend on the choice of the
control law but precisely on the fact that this particular problem
is solvable. Furthermore, these ADDP finite fixed poles can also be
characterized in terms of finite invariant zeros of the open-loop
system, as this was done in Malabre, Martinez-Garcia, and Del-
Muro-Cuellar (1997) for exact DDP, and later considered in Chu
(2003) and Ntogramatzidis (2008).
An important consequence of the characterization of the ADDP

finite fixedpoles is that it directly gives an answer to theproblemof
ADDPwith internal stability, say ADDPS. In the classical approach,
as shown above, to solve ADDPS, one needs to precise first the
stability region and then to handle the associated stabilizability
geometric subspaces. With our results, we precisely know the
ADDP finite fixed poles and we can conclude about the existence
of stabilizing solutions just by looking a posteriori at their position
with respect to the chosen unstable region.
The paper is organized as follows. In Section 2, we introduce

somenotation and the basic concepts thatwill be used. In Section 3,
we study the pole assignability of almost invariant subspaces.
In Section 4, we give the definition of ADDP finite fixed poles
and in Section 5 their geometric and structural characterizations.
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Section 6 details an example which illustrates our contributions.
Most of the detailed proofs are sent to the Appendix.

2. Notation and geometric preliminaries

We consider linear time-invariant disturbed systems Σ(A, B,
D, E) described by:

Σ :

{
ẋ(t) = Ax(t)+ Bu(t)+ Dd(t)
z(t) = Ex(t)

where x, u, d, and z are respectively the state, control input, distur-
bance input, and output to be controlled. These signals belong to
the finite dimensional real vector spacesX , U , Q, and Z , respec-
tively.
In this paper, vectors are denoted by lower case letters, ma-

trices/maps by capitals and subspaces by script capitals. If A is a
squarematrix, thenσ(A)denotes its spectrum. IfA : X 7−→ Y and
V ⊆ X , the restriction of the map A to V is denoted by A|V . If V1
and V2 are A-invariant subspaces and V2 ⊆ V1, the map induced by
A in the quotient space V1/V2 is denoted by A|V1/V2. AT denotes the
transpose of A. To simplify, we sometimes use B in place of Im B,
the image of B andK in place of Ker E, the kernel of E.⊕ denotes
direct sum of subspaces, ] denotes union of sets with common el-
ements repeated. C− denotes the open left-half complex plane.
DenoteΣ(A,B)x := {x(t) : [0,∞)→ X ; x(t) is a.c. (absolutely

continuous), and ẋ(t) − Ax(t) ∈ Im B a.e. (almost everywhere)},
and Σ(A,[B|D])x := {x(t) : [0,∞) → X ; x(t) is a.c., and ẋ(t) −
Ax(t) ∈ Im B+ Im D a.e.}.
IfX is a normed vector space, with norm ‖.‖, andL a subspace

of X , then for any x ∈ X , its distance to L is denoted as:
d(x,L ) := infy∈L ‖x− y‖.
For any measurable function, say W : [0,∞) → X , we say

thatW ∈ Lp[0,∞) if ‖W‖Lp < +∞, where:

‖W‖Lp :=


(∫

∞

0
‖W (t)‖p dt

)1/p
for 1 ≤ p <∞

ess sup
t≥0
‖W (t)‖ for p = ∞.

The reachable space ofΣ (by the control u) is denoted by 〈A|B〉 :=
B + AB + A2B + · · · + An−1B, where n is the dimension ofX .
A subspace V ⊆ X is called (A,B) (controlled) invariant if

for any x0 ∈ V there exists an input function u such that the
corresponding trajectory x(t) ∈ V for all t ≥ 0 with x(0) = x0;
or equivalently if there exists F : X → U such that (A+ BF)V ⊆
V (Trentelman, Stoorvogel, & Hautus, 2001). F is called a friend of
V and we denoteF (V ) the set of all such F .
A subspace R ⊆ X is called an (A,B) controllability subspace

if for any x0 ∈ R, and any x1 ∈ R, there exists T > 0 and an input
function u such that the solution of Σ(A, B,D, E) with x(0) = x0
satisfies x(t) ∈ R for 0 ≤ t ≤ T and x(T ) = x1; or equivalently if
there exist F : X → U , and G : Y → U , with Y ⊆ U , such that:
R := 〈A+ BF |Im(BG)〉 (Trentelman et al., 2001).
A subspace Va ⊆ X is called an almost (A,B) (controlled)

invariant subspace if for any x0 ∈ Va and for any ε > 0 there exists
a state trajectory x(t) ∈ Σ(A,B)x with the properties that x(0) = x0
and d(x(t), Va) ≤ ε, for any t ≥ 0; or equivalently if there exists
Fε : X → U such that, for any x0 ∈ Va and for any t ≥ 0,
d(e(A+BFε )tx0, Va) ≤ ε. Fε is called an ε-distance friend of Va and
we denoteFε(Va) the set of all such Fε .
A subspace Ra ⊆ X is called an almost (A,B) controllability

subspace if for any x0 ∈ Ra, and any x1 ∈ Ra there exists T > 0
such that, for any ε > 0 there exists a state trajectory x(t) ∈ Σ(A,B)x
with the properties that x(0) = x0, x(T ) = x1 and d(x(t),Ra) ≤
ε,∀t ≥ 0.

V ∗, the supremal (A,B) (controlled) invariant subspace con-
tained inK , is the limit of the following non-increasing algorithm

: V 0 = X , V i+1 = K ∩ A−1(B + V i). R∗, the supremal (A,B)
controllability subspace contained inK , is the limit of the follow-
ing non-decreasing algorithm : R0 = 0, R i+1 = V ∗ ∩ (AR i + B).
See Basile and Marro (1992) and Wonham (1985).

R∗a , the supremal almost (A,B) controllability subspace con-
tained inK , is the limit of the following non-decreasing algorithm
: R0a = 0, R

i+1
a = K ∩ (AR ia + B). V ∗a , the supremal almost

(A,B) invariant subspace contained inK , satisfies: V ∗a = V ∗+R∗a .
See Willems (1981).
Let us denote byS ∗ the limit of the following algorithm:S 0

=

0,S i+1
= B+A(K ∩S i).S ∗ is usually introduced in the context

of (E , A) invariance (dual to (A,B) invariance). In our present
context, we prefer to handle it through its almost controllability
properties, as established inWillems (1981), namely:S ∗ = AR∗a+
B and R∗a = K ∩ S ∗.
Note that all these notions of exact/almost invariance or

controllability properties, can easily be defined, similarly, for the
‘‘composite’’ system (let Bc := [B,D]), say Σc = Σ(A, Bc, 0, E),
i.e. with U ⊕ Q in place of U . They will be noted, respectively,
V ∗c ,R

∗
c ,R

∗
ca,S

∗
c .

In the following, for any given subspace L ⊆ X , V ∗(L ),
R∗(L ) and R∗a (L ) denote, respectively, the supremal (A,B)
invariant, (A,B) controllability and almost (A,B) controllability
subspace included inL .

Definition 1 (Willems, 1981). ADDP (the Almost Disturbance
Decoupling Problem in Lp − Lq-sense) is solvable if : ∀ε > 0,
there exists a state feedbackmatrix Fε , such that, in the closed-loop
system with x(0) = 0, ‖z(t)‖Lq ≤ ε ‖d(t)‖Lp , for all Lp measurable
disturbance input d(t) and for all 1 ≤ p ≤ q ≤ ∞.

The following Lemma provides a practical method to check
whether a state feedback sequence { Fε} can really solve ADDP. It
will be used in the treatment of our illustrative example.

Lemma 2. (Trentelman, 1983) Suppose there exists a sequence {Fε}
such that

∥∥Ee(A+BFε )tD∥∥Lp ε→0
−→ 0 for p = 1 and p = ∞, then ADDP

is solvable.

FromWillems (1981), ADDP is solvable if and only if:

Im D ⊆ V ∗a . (1)

Definition 3. (Basile & Marro, 1992) A controlled-invariant sub-
space included in K , say V , is called self-bounded if B ∩ V =

B ∩ V ∗, or equivalently if R∗ is included in V . We denote the set
of all the self-bounded controlled-invariant subspaces included in
K by SBCI(A, B,K ).

Someparticular system structures play a key role in the solution
of control problems, among them are the invariant zeros. The finite
invariant zeros of Σ(A, B, 0, E), i.e. from u to z, are equal to the
eigenvalues of (A + BF) in V ∗/R∗, which are the same for any
F ∈ F (V ∗): Z(A, B, E) := σ(A+ BF |(V ∗/R∗)).

3. Pole assignability for almost invariant subspaces

It is well known from Schumacher (1980) that complete
freedom in placing the closed-loop poles is not usually possible
when the state feedback F is restricted to be a friend of a given
(A,B) invariant subspaceV , namely, there exists some fixedpart in
σ(A+BF)when F is restricted toF (V ). In fact, a similar restriction
also exists when using ε-distance friends, say Fε ∈ Fε(Va) of a
given almost (A,B) invariant subspace Va.

Lemma 4. Let Va be an almost invariant subspace. For any given
symmetric spectra of ad hoc lengths, say Λ1 and Λ2 ⊂ C−, for any
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