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Adsorbent 3-D sodium bisulfite reduced-graphene aerogels (S-rGA) were fabricated via the reduction of gra-
phene oxide. It has high adsorption capacity and excellent reusability for the removal of tetrabromobisphenol A
(TBBPA). S-rGA with its unique block and porous network structure was characterized using scanning Electron
Microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis. The adsorption characteristics of S-rGA to
TBBPA were investigated through batch experiments. In the study, the adsorption kinetics were well described
by the pseudo-second-order model. The adsorption equilibrium well fit to the Langmuir model with maximum
adsorption capacity of 128.37 mg/g. Thermodynamic parameters suggested that the adsorption of TBBPA was
exothermic and spontaneous. Fourier transformed infrared (FTIR) spectra indicated that πeπ interaction might
be consistent with the adsorption of TBBPA by S-rGA. Furthermore, reuse experiments indicated that S-rGA
could be regenerated five times with only a slight loss in adsorption capacity. These results demonstrated that S-
rGA is potentially an ideal adsorbents for enhancing the adsorption capacity of TBBPA in aqueous environments.
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1. Introduction

Tetrabromobisphenol A (TBBPA) is a typical representative of bro-
minated flame retardants (BFRs), which are widely used in plastic,
textile and electronic products [1]. TBBPA is a persistent bioaccumu-
lative pollutant, which can act as an endocrine disruptor, an im-
munotoxicity mediator, and a neurotoxicity effector after long-term
exposure [2–4]. It had been included on the OSPAR list of chemicals for
priority action under the “Hazardous Substances Strategy” [5]. TBBPA’s
worldwide usage and limited water solubility may result in its con-
tamination of and persistence environmental media. Therefore, appro-
priate measures to remove TBBPA from aquatic environments are ur-
gently required.

Generally, adsorption is acknowledged as a popular method for
water treatment because of its facile operation, high performance and
cost-effectiveness. Recently, graphene had been widely used as an ad-
sorbent for various environmental pollutants because of its unique at-
tributes. For instance, graphene has the perfect sp2 hybrid carbon na-
nostructure and a relatively high surface area and can be easily
prepared via chemical oxidation-reduction methods [6]. Several ex-
perimental studies have already been carried out on the adsorption of
organic pollutants [7–13], and these pollutants could be adsorbed onto
adsorbents through πeπ interactions because of their benzene ring
structure [9,14]. Xu et al. used graphene as an adsorbents for the re-
moval of bisphenol A (BPA), achieving a maximum adsorption capacity
of 182 mg/g [11]. Wu et al. used graphene for the sorption of p-to-
lutenesulfonic acid (p-TA), 1-naphthalenesulfonic acid (1-NA) and
methyl blue (MB), achieving maximum adsorption capacities of 1.43 g/
g, 1.46 g/g and 1.52 g/g, respectively [15]. Obviously, graphene has
excellent adsorption capacity. However, nanoscale graphene has some
drawbacks such as difficult separation and secondary environment
pollution, serious agglomeration and restacking [16]. To realize easy
separation after adsorption, Jin et al. prepared magnetic reduced gra-
phene oxides (RGOs) for the adsorption of 4-n-nonylphenol (4-n-NP)
and BPA, but its maximum adsorption capacities were only 63.96 and
48.74 mg/g, respectively [10]. Sun et al. prepared magnetite/reduced
graphene oxide (MRGO) for the adsorption of rhodamine B and mala-
chite green, but reached maximum adsorption capacities of only 13.15
and 22 mg/g, respectively [17]. Therefore, many efforts have been
devoted to improving the adsorption capacity and separation of gra-
phene adsorbents.

Recently, synthesis of hierarchical 3-D architectures overcame these
limitations and offered new opportunities to design advanced materials
with optimized adsorption properties based on the unique combination
of 3-D structural and chemical functionalities [18–20]. Graphene
aerogel is one of these 3-D macroscopic assemblies with high surface
area that possess attractive potential in water treatment owing to their
advantages. For example, the well block mechanical strength mini-
mized the possible environmental effects caused by the release of gra-
phene nano-sheets. [21,22], and the unique 3-D microporous and me-
soporous interconnected network allowed access and diffusion of ions
and molecules [23,24]. Furthermore, these absorbents were lightweight
and hydrophobic, which can lead to produce interaction with hydro-
phobic organic pollutants [25]. Cong et al. fabricated macroscopic
multifunctional graphene-based aerogels with maximum uptake capa-
city of 27 times their weight for the adsorption of oils [26]. The F-rGO
aerogel prepared by Hong et al. exhibited excellent absorption effi-
ciency for various oils and organic solvents, resulting in capacity ran-
ging from 34 to 112 times its weight in absorption capability [27]. Bi
et al. produced spongy graphene with enhanced performance as an oil
sorbent, and its adsorption capacity reached 616 times its own weight
[20]. Although graphene aerogels have good adsorption properties re-
garding on oil, rarely have systematic studies reported the adsorption of
phenolic compounds such as TBBPA in aqueous environments by gra-
phene aerogels.

In this study, a simple chemical reduction method was used for the

synthesis of 3-D graphene aerogel with sodium bisulfite as the reducing
agent. The physicochemical properties and adsorption characteristics of
the prepared sulfenyl-reduced graphene aerogel (S-rGA) were char-
acterized by scanning electron microscop (SEM), Brunauer-Emmett-
Teller (BET), X-ray diffraction (XRD), Raman, X-ray photoelectron
spectroscopy (XPS) and Fourier-transform infrared (FTIR) analyses. A
comprehensive study on the adsorption and desorption behaviors of S-
RGA for TBBPA in aqueous solutions was performed. The adsorption
isotherms, adsorption kinetics, and thermodynamics were system-
atically investigated. The influence factors (initial TBBPA concentra-
tion, temperature and pH) and adsorption mechanism of the adsorption
of TBBPA by S-rGA were explored. The experimental data provided a
better understanding of the adsorption process of TBBPA by S-rGA and
led to the development of an efficient adsorbent for removing phenolic
compound from wastewater.

2. Materials and methods

2.1. Materials

Analytical grade NaHSO3, KMnO4, 98% H2SO4, and 30% H2O2

aqueous solution were purchased from Shanghai Chemical Reagents
Company. Graphite (diameter, 20 μm) and TBBPA (4,4-iso-
propylidenebis (2,6-dibromophenol), ≥98%) were obtained from
Sigma-Aldrich. TBBPA has a water solubility of 4.16 mg/L (25 °C,
logKow = 4.5). The chemical structure of TBBPA is shown in Fig.S1.

2.2. Synthesis of graphene oxide (GO) and S-RGA

GO was prepared via an improved Hummers’ method [28]. Through
sonication for 1 h, 40 mg GO powder was dispersed in 20 mL deionized
water, After the sonication, 200 mg of NaHSO3 was added and the so-
lution was placed in an ultrasonic for 5 min. The resultant slurry was
then heated at 95 °C for 3 h. The reduced GO hydrogels (S-rGH) were
dialyzed for 3 d and then freeze-dried for dried 24 h. Remnant water in
the samples was removed in a vacuum drying oven at 105 °C for
overnight to obtain S-RGA.

2.3. Characterization

SEM analyses were performed with a field emission scanning elec-
tron microscope (MERLIN, Germany) at an acceleration voltage of 5 kV
and energy dispersive X-ray spectra (EDS) were conducted on a JEOL-
2010 microscope operating at an accelerating voltage of 200 kV.
Powder XRD; (D/max-IIIA, Rigaku, Japan) was used to investigate the
crystal structure. Raman spectra were obtained on a Renishaw Micro-
Raman Spectrometer using 532 nm laser excitation. The surface func-
tional groups of the sample were detected using FT-IR spectra (Nexus
Por Euro, USA) from 400 to 4000 cm−1. XPS analysis was performed
with an Axis Ultra DLD (Kratos, England). The specific surface area and
pore size were calculated from the adsorption- desorption isotherm of
N2 at 77 K by the BET and Barrett-Joyner-Halenda (BJH) method on an
ASAP 2020 mesoporou physissorption analyzer. Zeta potential was
determined using a Malvem Zetasizer Nano-ZS90

The concentrations of TBBPA were detected using ultra performance
liquid chromatography (UPLC, Waters, USA). An isocratic elution pro-
gram with acetonitrile/water (78:22, v/v) was used for the mobile
phase. The flow rate was maintained at 0.3 mL/min, and the injection
volume was 4 μL. The detection wavelength was 220 nm, and the
temperature of the column was 303 K.

2.4. Batch adsorption experiments

2.4.1. Adsorption experiments
To determine the adsorption capacities of S-rGA for TBBPA, as well

as the influence of the initial TBBPA concentration, pH and
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