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a b s t r a c t

This paper investigates the problems of robust stability, stabilization and H∞-control for uncertain
impulsive systems with time-delay. The parametric uncertainties are assumed to be time-varying and
norm-bounded. Three classes of impulsive systems with time-delay are considered: the systems with
stable/stabilizable continuous dynamics and unstable/unstabilizable discrete dynamics, the systemswith
unstable/unstabilizable continuous dynamics and stable/stabilizable discrete dynamics, and the systems
where both the continuous-time dynamics and the discrete-time dynamics are stable/stabilizable. For
each class of system, by using the Lyapunov function and Razumikhin-type techniques, sufficient
conditions for robust stability, stabilization and H∞-control are developed in terms of linear matrix
inequalities. Numerical examples are given which illustrate the applicability of the theoretical results.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Impulsive dynamical systems have attracted considerable
interest in science and engineering during the past decades
because they provide a natural framework for mathematical
modeling of many real world evolutionary processes where the
states undergo abrupt changes at certain instants. An impulsive
dynamical system can be viewed as a hybrid one comprised of
three components: a continuous-time differential equation, which
governs the motion of the dynamical systems between impulsive
or resetting events; a difference equation, which governs the way
the system states are instantaneously changed when a resetting
event occurs; and a criterion for determining when the states
of the systems are to be reset. Stability properties of impulsive
dynamical systems have been extensively studied in the literature,
we refer to Bainov and Simeonov (1989), Li, Soh, and Xu (1997,
1998), Li, Wen, and Soh (2001), Xu and Chen (2003) and Yang
(2001), and the references therein. The impulsive control method
based on stability theory of impulsive dynamical systems has
been widely used in the stabilization and synchronization of
chaotic systems, see, e.g., Wen, Ji, and Li (2007), Yang and Chua
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(1997), Yang, Yang, and Yang (1997), and Yang (2001). For the
impulsive systems with external disturbances, the problems of
input-state stability (ISS), dissipativity and H∞ control have been
investigated in Guan, Yao, and Hill (2005), Hespanha, Liberzon,
and Teel (2005), Haddad, Chellabonia, and Kablar (2001) and Yao,
Guan, Chen, and Ho (2006). However, the corresponding theory for
impulsive dynamical systems with time-delay has been relatively
less developed. The difficulty in developing such a theory may
come from the effects of impulses and time-delay on system
behaviors. Most of the results for impulsive dynamical systems
with time-delay in the current literature focus on the stability
analysis (Anokhin, Berezansky, & Braverman, 1995; Liu & Ballinger,
2001; Wang & Liu, 2005; Yang & Xu, 2007). There have been very
few results reported on controller synthesis for impulsive control
systems with time-delay.
This paper will study the problems of robust exponential

stability, robust stabilization and robust H∞ control for uncertain
impulsive systemswith time-delay. Different from thework onH∞
control of impulsive systems without delay in Guan et al. (2005)
and Yao et al. (2006), where both the continuous dynamics and
discrete dynamics are required to be stable/stabilizable, we will
consider more general types of impulsive delayed systems. That
is, we will divide the impulsive control systems with time-delay
into three classes: the systems with stable/stabilizable continuous
dynamics and unstable/unstabilizable discrete dynamics, the
systems with unstable/unstabilizable continuous dynamics and
stable/stabilizable discrete dynamics, and the systems where both
the continuous-time dynamics and the discrete-time dynamics are
stable/stabilizable. The first class of impulsive systems corresponds
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to the case when the continuous dynamics are subjected to
impulsive perturbations, while the second class of impulsive
systems corresponds to the case when impulses are employed
to stabilize the unstable continuous dynamics. It is noted that
the standard methods from H∞-control for continuous delayed
systems are not suitable for the H∞ control for the first and the
second classes of impulsive delayed systems. Thus the stability and
control issues of these two classes of impulsive systemswith time-
delay are of theoretical and practical importance. In this paper,
we will first establish the delay-independent exponential stability
and state-feedback stabilization criteria in terms of linear matrix
inequalities (LMIs) using Lyapunov–Razumikhin techniques. Then
based on the stabilization results, some new analysis techniques
will be developed to derive the sufficient conditions forH∞-control
of the above three classes of impulsive delayed systems. Finally,
four exampleswill be given to demonstrate the effectiveness of the
proposed approach.

2. Problem statement

In the sequel, if not explicitly given, matrices are assumed
to have compatible dimensions. The notation M > (≥, <,≤)0
is used to denote a symmetric positive-definite (positive-
semidefinite, negative, negative-semidefinite) matrix. λmin(·) and
λmax(·) represent the minimum and maximum eigenvalues of the
corresponding matrix, respectively. ‖ · ‖ denotes Euclidean norm
for vectors or the spectral norm of matrices. N denotes the set of
positive integers. For τ > 0, let PC([−τ , 0],Rn) denote the set of
piecewise right continuous function φ : [−τ , 0] → Rn with the
norm defined by ‖φ‖τ = sup−τ≤θ≤0 ‖φ(θ)‖.
Consider uncertain linear impulsive systems with time-delay

described by the following state equation

ẋ(t) = A(t)x(t)+ A1(t)x(t − τ(t))+ f (t, xt)
+ B1(t)uc(t)+ H1w(t), t 6= tk,

∆x(t) = (C(t)− I)x(t−)+ BI(t)ud(t−), t = tk,
z(t) = E(t)x(t)+ B2(t)u(t)+ H2w(t),
x(t0 + θ) = φ(θ), t0 = 0, θ ∈ [−τ , 0],

 (1)

where x(t) ∈ Rn is the system state, uc(t) ∈ Rm1 is the continuous
control input, ud(t) ∈ Rm2 is the impulsive control input, w(t) ∈
Rp is the disturbance input which belongs to L2[0,∞), and z(t) ∈
Rq is the controlled output. τ(t) is a time-varying delay satisfying
0 ≤ τ(t) ≤ τ . f (t, xt) is the unknown nonlinear perturbation. We
assume that f : R+ × PC([−τ , 0],Rn) → Rn is continuous and
satisfies the following condition:

‖f (t, xt)‖2 ≤ ‖Gx(t)‖2 + ‖G1x(t − τ(t))‖2, t ≥ 0. (2)

where G and G1 are known constantmatrices. φ ∈ PC([−τ , 0],Rn)
is the initial condition of the state. ∆x(tk) = x(t+k ) − x(t

−

k )
describes the state jumping at impulsive time instant t = tk, where
x(t+k ) = x(tk) = limh→0+ x(tk + h), x(t

−

k ) = limh→0− x(tk + h),
k = 1, 2, . . . , and 0 < t1 < t2 < · · · < tk < · · ·

(tk → ∞ as k → ∞). H1,H2 are known constant matrices
with appropriate dimensions. A(t), B1(t), E(t), B2(t), C(t), BI(t) are
matrix functions with time-varying uncertainties, that is, A(t) =
A + ∆A(t), A1(t) = A1 + ∆A1(t), B1(t) = B1 + ∆B1(t),
E(t) = E + ∆E(t), B2(t) = B2 + ∆B2(t), C(t) = C + ∆C(t),
BI(t) = BI + ∆BI(t), where A, A1, B1, E, B2, C, BI are known real
constant matrices, ∆A(t),∆A1(t),∆B1(t),∆E(t),∆B2(t),∆C(t),
and ∆BI(t) are unknown matrices representing time-varying
parameter uncertainties. We assume that the uncertainties are
norm-bounded and can be described as

[∆A(t)∆A1(t)∆B1(t)] = D1F1(t) [N1 Nd Nb1] ,
[∆E(t)∆B2(t)] = D2F2(t) [N2 Nb2] ,
[∆C(t)∆BI(t)] = D0F3(t) [N0 NI ] ,

}
(3)

where D0,D1,D2,N0,N1,N2,Nb1,Nb2,Nd,NI are known real con-
stant matrices and Fi(t) are unknown matrix functions satisfying
‖Fi(t)‖ ≤ 1, i = 1, 2, 3. It is assumed that the elements of Fi(t) are
Lebesgue measurable, i = 1, 2, 3.
In what follows, we will divide three cases to establish the

robust stability, robust stabilization and robust H∞ control of
system (1) by using Lyapunov–Razumikhin techniques.We denote
bySmin(β) the class of impulse time sequences that satisfy infk{tk−
tk−1} ≥ β , and denote by Smax(β) the class of impulse time
sequences that satisfy supk{tk − tk−1} ≤ β .

3. Robust stability and robust stabilization

This section considers the exponential stability and stabiliza-
tion of system (1) and its robustness. For this purpose, we restrict
our study to the case ofw(t) = 0, i.e.,

ẋ(t) = A(t)x(t)+ A1(t)x(t − τ(t))+ f (t, xt)
+ B1(t)uc(t), t 6= tk,

∆x(t) = (C(t)− I)x(t−)+ BI(t)ud(t−), t = tk,
x(t0 + θ) = φ(θ), t0 = 0, θ ∈ [−τ , 0].

 (4)

First, we introduce the definition of exponential stability.

Definition 1. For a given class S of admissible impulse time
sequences, system (4) with uc(·) = 0 and ud(·) = 0 is said
to be robustly exponentially stable over S if there exists a scalar
ν > 0 such that, for every ε > 0, there is a scalar δ > 0 such
that φ ∈ PC([−τ , 0],Rn) with ‖φ‖τ ≤ δ implies ‖x(t, t0, φ)‖ <
ε exp(−ν(t−t0)), t ≥ t0, for all admissible uncertainties satisfying
(3) and for every impulse time sequence in S.

Next, we develop Lyapunov–Razumikhin techniques to estab-
lish the sufficient conditions for exponential stability of system (4)
with uc(·) = 0 and ud(·) = 0.

Theorem 1. Consider system (4) with uc(·) = 0 and ud(·) = 0.
Assume that for a prescribed scalar β > 0, there exist a matrix X > 0
and positive scalars µ, α, d, ε1, and ε2 such that the following matrix
inequalities hold:
Ψ A1X dI XNT1 XGT 0
∗ −αX 0 XNTd 0 XGT1
∗ 0 −dI 0 0 0
∗ ∗ 0 −ε1I 0 0
∗ 0 0 0 −dI 0
0 ∗ 0 0 0 −dI

 < 0, (5)

−µX XCT XNT0
∗ −X + ε2D0DT0 0
∗ 0 −ε2I

 ≤ 0, (6)

where Ψ = AX + XAT + (αg(µ)+ lnµ/β)X + ε1D1DT1, g(µ) = µ
if µ ≥ 1 and g(µ) = 1/µ if µ < 1. Then for any bounded time-
delay τ(t), when µ > 1, system (4) with uc(·) = 0 and ud(·) = 0 is
robustly exponentially stable over Smin(β); when µ = 1, system (4)
with uc(·) = 0 and ud(·) = 0 is robustly exponentially stable for any
impulsive time sequence {tk}; whenµ < 1, system (4)with uc(·) = 0
and ud(·) = 0 is robustly exponentially stable over Smax(β).

Proof. Set P = X−1, λ0 = λmin(P) and λ1 = λmax(P). For
any φ ∈ PC([−τ , 0],Rn), we denote x(t, t0, φ) by x(t) and set
V (t) = xT(t)Px(t). Pre- and post-multiplying (6) by diag{P, P, I}
and combining with Schur complements yields

− µP + CT(P−1 − ε2D0DT0)
−1C + ε−12 N

T
0N0 ≤ 0. (7)

Then using the second equation of (4), and applying (b) of Lemma
2.2 in Wang, Xie, and de Souza (1992) and (7), one has



Download	English	Version:

https://daneshyari.com/en/article/697816

Download	Persian	Version:

https://daneshyari.com/article/697816

Daneshyari.com

https://daneshyari.com/en/article/697816
https://daneshyari.com/article/697816
https://daneshyari.com/

