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a b s t r a c t

Population models are widely applied in biomedical data analysis since they characterize both the
average and individual responses of a population of subjects. In the absence of a reliable mechanistic
model, one can resort to the Bayesian nonparametric approach that models the individual curves as
Gaussian processes. This paper develops an efficient computational scheme for estimating the average
and individual curves from large data sets collected in standardized experiments, i.e.with a fixed sampling
schedule. It is shown that the overall scheme exhibits a ‘‘client–server’’ architecture. The server is in
charge of handling and processing the collective data base of past experiments. The clients ask the
server for the information needed to reconstruct the individual curve in a single new experiment. This
architecture allows the clients to take advantage of the overall data set without violating possible privacy
and confidentiality constraints and with negligible computational effort.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most interesting identification problems arising in
biomedical data analysis is the characterization of a population
of subjects. Classical examples are found in pharmacokinetics
(PK) and pharmacodynamics (PD), where multiple subjects are
sampled in order to obtain both the average and individual
response to the administered drug. If a sufficiently large number
of samples are collected in each individual, it is possible to identify
a distinct model for each subject. The typical response of the
population could then be obtained from the distribution of the
individual models. However, the specific nature of biomedical
experiments often poses technological, cost or ethical constraints
that permits to collect only few data in each single subject. When
the separate identification of individual models is not viable, an
effective solution is provided by the so-called populationmodeling
approaches (Beal & Sheiner, 1982; Davidian & Giltinan, 1995;
Sheiner, 1994). Such methods process all the data simultaneously
in order to achieve both the typical and individual models.
Although originated in the PK/PD field, population modeling is
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becoming more and more popular also in other scenarios as
metabolic systems, medical imaging and even genomics (Bertoldo,
Sparacino, & Cobelli, 2004; Ferrazzi, Magni, & Bellazzi, 2003; Vicini
& Cobelli, 2001).
The standard populationmodel is a continuous-time dynamical

system containing a finite number of unknown parameters,
typically a compartmental model (Jacquez, 1985). This leads to a
nonlinear-in-parameter identification problem that can be tackled
resorting to various iterative algorithms. Among them, one may
mention the celebrated NONMEM software (Beal & Sheiner, 1992),
which relies onmaximum likelihood estimation, but also Bayesian
algorithms that compute the posterior distribution of parameters
exploiting the Markov chain Monte Carlo (MCMC) machinery
(Gilks, Richardson, & Spiegelhalter, 1996; Lunn, Best, Thomas,
Wakefield, & Spiegelhalter, 2002).
At the early stages of a study or when the mechanistic model

of a physiological phenomenon is not available, it may be difficult
to formulate a reliable parametric model. Hence the need for
flexible nonparametric population approaches that reduce the
structural assumptions to a minimum (Ibragimov & Khasminskii,
1981). Along this direction, an example is provided by the so-
called semiparametric methods that model the response curves
as regression splines (Fattinger & Verotta, 1995; Park, Verotta,
Blaschke, & Sheiner, 1997). A potential difficulty underlying the
use of these techniques is the optimization of the number and
location of the knots of regression splines, which could suffer from
the presence of local minima. More recently, in order to develop
a fully nonparametric approach, within a Bayesian paradigm it
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has been proposed to model the individual curves as realizations
of discrete- or continuous-time stochastic processes, e.g. random
walks or integrated Wiener processes (Magni, Bellazzi, DeNicolao,
Poggesi, & Rocchetti, 2002; Neve, Nicolao, & Marchesi, 2007). In
these works, each individual curve is seen as the sum of an average
curve (common to all subjects) and an individual shift (varying
from subject to subject). In particular, both the average curve and
the individual shifts are assumed to be Gaussian processes whose
statistics are specified by few hyperparameters. For instance, if
the curve is an integrated Wiener process, the hyperparameter
is the corresponding intensity. Hyperparameter tuning can be
carried out via likelihood maximization. For a given choice of the
hyperparameters, the posterior expectations of the processes given
the data provide point estimates of the average and individual
curves. In particular, when the prior is formulated in terms
of integrated Wiener processes, the estimated curves are cubic
splines (Neve et al., 2007). This Bayesian nonparametric approach
has strong connections with kernel methods, Gaussian processes
estimation, regularization networks (Evgeniou, Micchelli, & Pontil,
2005; Rasmussen & Williams, 2006). Recently, a Bayesian MCMC
approach able to return the full posterior of hyperparameters and
unknown functions has been also worked out, see Neve, Nicolao,
and Marchesi (2008).
In this paper, attention is focused on the nonparametric

population analysis of standardized experiments which involve a
large number of subjects. Herein, the term standardized is used
to denote an experiment that is repeated in multiple subjects
adopting a standard sampling schedule. A notable example, treated
later in the paper, is the intravenous glucose tolerance test (IVGTT),
where glucose plasma concentration ismeasured after intravenous
administration of a glucose bolus. This test is widely employed in
the diagnosis of metabolic disorders, see e.g. Bergman, Bowden,
and Cobelli (1981).
In the Bayesian nonparametric approach the computation of the

posterior expectations calls for the solution of an algebraic linear
system of order nT , where nT is the total number of observations.
This is a potential drawback because the complexity scales with
the cube of nT . The burden may seem even worse in the case of
standardized experiments involving a large number of subjects. As
a matter of fact, in the present paper it is shown that the fixed
sampling schedule can be exploited to design an algorithm whose
complexity scaleswith the cube of the number of samples collected
in each individual. This holds for evaluation of both the posterior
expectations and confidence intervals.
The new algorithms pave the way to the implementation

of a client–server architecture for managing the identification
of population models for standardized experiments. The server
computes and stores the sufficient statistics abstracted froma large
historical data set. The client, whose aim is analyzing a single
new experiment (not necessarily standardized), interrogates the
server to get the information needed to compute the posterior
expectation of the individual curve given all the historical data.
The client can also send its data to the server in order to update
the centralized sufficient statistics. As an example, the server
could be managed by a reference research center, whereas the
clients could be laboratories collecting and processing clinical
data. According to this architecture, the local laboratories benefit
from the information contained in the collective database in a
computationally efficient way and without accessing individual
data subject to privacy and confidentiality constraints. To the
authors’ knowledge, the client–server architecture is a novel
contribution of this paper. In fact, most population modeling
approaches cannot be decentralized because of their intrinsic
nonlinear-in-parameter structure.
The paper is organized as follows. In Section 2 the problem is

given itsmathematical formulation. In Section 3 the computational
algorithms are derived. In Section 4 the proposed methodology is
tested on a large data set of IVGTT experiments. Some conclusions
end the paper.

2. Statement of the problem

In what follows, E[.] is used to denote the expectation operator
and vectors are column vectors, unless otherwise specified.
Further, given two random vectors q andw, let cov[q, w] = E[(q−
E[q])(w − E[w])T] and Var[q] = E[(q− E[q])(q− E[q])T].
We consider the problem of estimating realizations of continu-

ous-time stochastic processes xj(t), j = 1, 2, . . . ,m + 1, from
a finite number of noisy samples. The curves xj(t) represent the
responses ofm+ 1 subjects randomly drawn from a population. It
is assumed that number and location of the sampling instants do
not vary from subject to subject except for what concerns the last
one. To bemore specific, for j = 1, . . . ,m the curves are sampled at
instants {tk}, k = 1, 2, . . . , n, while the (m+1)-th curve is sampled
at instants {t∗k }, k = 1, 2, . . . , n

∗. The measurement model is

yjk = x
j(tk)+ ν

j
k, k = 1, . . . , n, j = 1, . . . ,m

ym+1k = xm+1(t∗k )+ ν
m+1
k , k = 1, . . . , n∗

where {ν j} = [ν
j
1 . . . ν

j
n]
T, j = 1, . . . ,m, and {νm+1} =

[νm+11 . . . νm+1n∗ ]
T are Gaussian and independent random vectors

such that for every k and j

E[ν jk] = 0, Var[ν j] = Σ j
ν .

We assume that the individual curves can be decomposed as

xj(t) = x̄(t)+ x̃j(t), j = 1, . . . ,m+ 1

where x̄(t) and x̃j(t) are zero-mean normal stochastic processes
that represent the average curve and the individual shift from
the average, respectively. We also assume that processes {ν jk}

m+1
j=1 ,

x̄(t) and {̃xj(t)}m+1j=1 are all mutually independent. For the sake of
simplicity, it is assumed that {̃xj(t)}m+1j=1 are identically distributed.
Define now

yj = [yj1 yj2 . . . yjn]
T, j = 1, 2, . . . ,m

ym+1 = [ym+11 ym+12 . . . ym+1n∗ ]
T

y =
[
(y1)T . . . (ym)T

]T
y+ =

[
yT (ym+1)T

]T
.

The paper is concerned with the solution of the following two
estimation problems.

• Given y, for any t compute efficiently the continuous-time
minimum variance estimate of the average curve x̄(t), i.e.
E[x̄(t)|y], as well as the variance of the reconstruction error,
i.e. Var[x̄(t)|y].
• Assuming that a new data set ym+1 is available, for any t
compute efficiently E[xm+1(t)|y+] and Var[xm+1(t)|y+].

3. Computational algorithms

3.1. Computing E[x̄(t)|y] and Var[x̄(t)|y]

The aim is to derive efficient algorithms to compute the
estimates E[x̄(τ )|y], E[xm+1(τ )|y+], where τ is a generic temporal
instant, together with their confidence intervals.
We start by introducing the following notation

x̄ = [x̄(t1) . . . x̄(tn)]T x̄τ = [x̄(τ ) x̄(t1) . . . x̄(tn)]T (1)
x̃j = [̃xj(t1) . . . x̃j(tn)]T, j = 1, 2, . . . ,m

and

R̄ = Var[x̄] R̄τ = cov[x̄τ , x̄]

R̄ττ = Var[x̄τ ] r̄τ = cov[x̄(τ ), x̄]

R̂ττ = Var[x̄τ |y] R̃ = Var[̃xj], j = 1, 2, . . . ,m.

(2)
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