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Abstract

Many numerical schemes can be suitably studied from a system theoretic point of view. This paper studies the relationship between the two
disciplines, that is, numerical analysis and system theory. We first see that various iterative solution schemes for linear and nonlinear equations
can be suitably transformed into the form of a closed-loop feedback system, and show the crucial role of the internal model principle in such a
context. This leads to new stability criteria for Newton’s method. We then study Runge–Kutta type methods for solving differential equations,
and also derive new stability criteria based on recent results on LMI. A numerical example is given to illustrate the advantage of the present
theory.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Numerical analysis; System theory; Stability of numerical methods; Newton’s method; Internal model principle; Lur’e control systems; Absolute
stability; Linear matrix inequality

1. Introduction

There exist many iterative numerical schemes for solving
linear or nonlinear equations or differential equations, hav-
ing different characteristics adopted to varied needs. These
schemes are mostly represented by difference equations, and
hold an important position. Although system theory is clearly a
suitable tool for analyzing such dynamical systems, the study
of numerical analysis from this viewpoint has not been quite
popular. However, recently some authors have started system
theoretic approaches toward numerical analysis; see, for ex-
ample, Gustafsson, Lundh, and Söderlind (1988), Bhaya and
Kaszkurewicz (2003, 2004), Kaszkurewicz, Bhaya, and Ramos
(1995), Schaerer and Kaszkurewicz (2001); and Wakasa and
Yamamoto (2001) and references therein. The crux of these
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approaches lies in the fact that we can not only describe the
behavior of numerical solutions obtained by iterative schemes
in such a system theoretic framework, but also study vari-
ous requirements such as convergence, stability and robustness
against external errors from this viewpoint. This fact opens a
great opportunity for system theory to provide numerical anal-
ysis with valuable new tools and concepts for analyzing or even
synthesizing pertinent dynamical systems associated with it.

We start this paper by analyzing the simple linear equation
Ax=b, to show the generic idea here on one hand: that is, to in-
terpret various iterative solution processes as feedback systems
that are to track a constant (step) input b with the 0th order plant
A. On the other hand, the important objective here is to show
the crucial relevance of the internal model principle in this con-
text. It arises from the objective of tracking b in spite of small
computational or data errors arising in the process of compu-
tation, and this is how the internal model principle comes into
play; see Section 2 for details. We then generalize this idea to
nonlinear equations. A stability criteria for Newton’s iterative
process is derived in a framework of nonlinear control system,
especially system of Lur’e type. The internal model princi-
ple again plays an important role here. The present analysis

http://www.elsevier.com/locate/automatica
mailto:kashima@mei.titech.ac.jp
mailto:yy@i.kyoto-u.ac.jp


K. Kashima, Y. Yamamoto / Automatica 43 (2007) 1156–1164 1157

enables us to relax conditions on the convergence region, and
the result is compared with those by conventional analysis.

In Section 2, we turn our attention to numerical integra-
tion methods of ordinary differential equations, particularly the
analysis of the absolute stability region of Runge–Kutta type
methods. The absolute stability at a point in the complex plane
means that a corresponding linear test problem is stable. The
absolute stability region governs the step size to guarantee ac-
curate numerical solutions. While this is an important prob-
lem, it is also known to be difficult to describe relationships
between this region and Runge–Kutta coefficients. Only for
some special cases, algebraic conditions of the coefficients have
been obtained, e.g., Scherer and Türke (1989). We here invoke
a new generalized Kalman–Yakubovich–Popov (KYP) lemma
derived by Iwasaki and Hara (2005), to obtain a more general
characterization of this region in terms of a linear matrix in-
equality (LMI). This allows us to design the coefficients of a
Runge–Kutta type method by optimizing the region of absolute
stability.

2. Iterative schemes and the internal model principle

The objective of this section is to show the relevance of the
internal model principle to various iterative schemes.

2.1. Iterative processes for linear equations

We start with a simple linear equation Ax =b. The crux here
is to place this into the framework of tracking systems, and
show that the internal model principle plays a crucial role.

Let A ∈ Rn×n, b ∈ Rn, and consider the linear equation

Ax = b

for x ∈ Rn. Suppose that A is nonsingular, and we wish to
generate a sequence xk that converges to the solution A−1b.
Decompose A as

A = D + E + F , (1)

where D, E and F are diagonal, strictly lower triangular and
strictly upper triangular matrices, respectively. Then the Ja-
cobi, Gauss–Seidel (GS), and successive over-relaxation (SOR)
methods are given as follows (Quarteroni, Sacco, & Saleri,
2000):

Jacobi : xk+1 = − D−1(E + F)xk + D−1b,

GS : xk+1 = − (D + E)−1Fxk + (D + E)−1b,

SOR : xk+1 = (I + �D−1E)−1{(1 − �)I − �D−1F }xk

+ �(D + �E)−1b,

where � is called a relaxation parameter.
These formulas perhaps give a somewhat ad hoc impression.

What is important here is to recognize that they can be brought
into the form of a feedback system driven by the error Ax − b.
This makes it possible to relate such schemes with the internal

Fig. 1. Block diagram for iterative methods.

model principle and provides a unified, and simplified view-
point.

Let us first regard A as a 0th order plant to be controlled,
and define the error signal ek := b − Axk which is expected
to converge to 0. We can rewrite the algorithm of the Jacobi
method as

xk+1 = − D−1(A − D)xk + D−1b

= xk + D−1(b − Axk)

= xk + D−1ek .

Similarly, the other two methods can also be brought into a
feedback form

xk+1 = xk + �ek

with � given by (D+E)−1 for GS and �(D+�E)−1 for SOR.
It is readily obvious that these methods take the common form
of Fig. 1, with step input signal u ≡ b. We now attempt to see
a more intrinsic reason for this.

Let us start by observing that any reasonable iterative solver
should satisfy the following properties:

• For arbitrary b, the method should work, i.e., the output
yk = Axk should track arbitrary constant b in order that xk

converge to the exact solution.
• This tracking property is robust, in presence of some data

errors, the method should still converge.

The celebrated internal model principle (Francis & Wonham,
1975) asserts that this robust tracking property is satisfied if
and only if the following two conditions hold:

(i) the feedback system is internally stable, i.e., the transfer ma-
trix from u to y is stable and no unstable pole-zero cancella-
tion exists; and

(ii) the loop transfer matrix from e to y contains the internal
model of exogenous signals, which is the step signal gener-
ator 1/(z − 1) in this case.

If we further assume uncertainty in the plant, property (ii) forces
the controller to contain the integrator 1/(z − 1), and the sim-
plest of such a construction is that given in Fig. 1. Moreover,
this construction rejects an arbitrary constant disturbance added
to x in Fig. 1. This tells us that why most, if not all, iterative
schemes assume the structure xk+1 = xk + correction term: it
is a crucial consequence of the internal model principle.

In Fig. 1, the open-loop transfer matrix clearly contains
1/(z − 1). Thus xk converges to A−1b if and only if condition
(i) above is satisfied, i.e., all eigenvalues of I − �A lie in the
open unit disc. This is consistent with the conventional results.
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