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a b s t r a c t

In this paper, we revisit the synchronization problems for coupled harmonic oscillators in a
dynamic proximity network. Unlike many existing algorithms for distributed control of complex
dynamical networks that require explicit assumptions on the network connectivity, we show that the
coupled harmonic oscillators can always be synchronized, without imposing any network connectivity
assumption. Moreover, we also investigate the synchronization with a leader and show that all harmonic
oscillators can asymptotically attain the position and velocity of the leader, againwithout any assumption
on connectivity of the followers. Numerical simulation illustrates the theoretical results.

© 2009 Published by Elsevier Ltd

1. Introduction

In recent years, there has been significant interest in the study
of synchronization from different fields (see, for example, Wang
(2002) andWu (2002) and the references therein). Two main lines
of research on the problems of synchronization have emerged
from this study. On the one hand, the two pioneering papers on
synchronization in coupled systems (Fujisaka & Yamada, 1983)
and synchronization in chaotic systems (Pecora & Carroll, 1990)
have stimulated a great deal of interest in the study of complete
synchronization of coupled nonlinear dynamical systems. On
the other hand, there has been much interest in the study of
synchronization in dynamical networks with complex topologies
in the past few years due to the discovery of the small-world
and scale-free properties of many natural and artificial complex
networks (Wang & Chen, 2002, 2003).
One of the most important contributions to the problem of

synchronization in coupled systems is the Kuramoto model (Ku-
ramoto, 1984), which was established based on the phenomenon
of collective synchronization. In the Kuramoto model, the infor-
mation of oscillators are assumed to be global, i.e., the underlying
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topology is fully connected. The Kuramoto model was later mod-
ified for the scenarios of nearest neighbor interaction (Jadbabaie,
Motee, & Barahona, 2004), switching topologies and presence of
nonhomogeneous delays (Papachristodoulou & Jadbabaie, 2005).
In contrast to the above models where the coupled systems are
described by single integrator dynamics, Ren in Ren (2008a) re-
cently investigated coupled second-order linear harmonic oscilla-
tormodels. The oscillators investigated in Ren (2008a) aremodeled
as point masses on a real line. Under some rather mild network
connectivity assumptions, the positions and velocities of coupled
harmonic oscillators can be synchronized in both fixed and switch-
ing networks, with or without a leader.
Related to the synchronization of coupled harmonic oscillators

are second-order consensus problems (Ren, 2008b; Ren & Atkins,
2007; Xie & Wang, 2007) and flocking problems (Olfati-Saber,
2006; Su, Wang, & Chen, 2009a; Su, Wang, & Lin, 2009b; Su, Wang,
& Yang, 2008; Tanner, Jadbabaie, & Pappas, 2007) in multi-agent
systems. In order to achieve second-order consensus in a multi-
agent system, the underlying topology must contain a directed
spanning tree in fixed networks, or must have a directed spanning
tree at each time instant in switching networks (Ren, 2008b; Ren
& Atkins, 2007; Xie & Wang, 2007). In the case of tracking a
virtual leader, one of the followers should have the information
of the virtual leader in a fixed network (Ren, 2008b). Stimulated
by Reynolds’ model (Reynolds, 1987), flocking algorithms have
been proposed by combining a local artificial potential field with
a velocity consensus component (Olfati-Saber, 2006; Su et al.,
2009a,b, 2008; Tanner et al., 2007). The convergence condition for
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the flocking algorithms in Olfati-Saber (2006); Tanner et al. (2007)
and Su et al. (2008) is that the underlying topology is connected at
each time instant. In order to track a virtual leader, the followers
should get in touch, directly or indirectly, with the virtual leader
from time to time (Su et al., 2009b). The convergence condition
for the connectivity-preserving flocking algorithm based only on
position measurements is that the initial network is connected (Su
et al., 2009a).
Synchronization of coupled harmonic oscillators, second-order

consensus and flocking are all characterized by second-order dyn-
amics, distributed control, local interactions and self-organization.
A key difference among these problems lies in the intrinsic
dynamics of the uncoupled systems. The intrinsic dynamics
of the uncoupled systems in the second-order consensus and
flocking problems are that of double integrators, while in the
synchronization of coupled harmonic oscillators, the dynamics
are that of second-order oscillators. A direct consequence of this
difference is that the consensus and flocking equilibria for the
velocities are zero or nonzero constants, while the synchronization
equilibrium for the velocities is time varying.
In the synchronization (Ren, 2008a), second-order consensus

(Ren, 2008b; Ren & Atkins, 2007; Xie & Wang, 2007) and
flocking (Olfati-Saber, 2006; Su et al., 2009a,b, 2008; Tanner
et al., 2007) algorithms, certain network connectivity assumptions
play a crucial role in the stability analysis. This is because
exchanging sufficient information among agents is necessary
for cooperation. However, in practice, such kinds of network
connectivity assumptions are usually very difficult to verify and
may not hold even if the initial network is well connected. On the
other hand,we observe that the intrinsic dynamics of the harmonic
oscillators will cause the agents to meet with each other from time
to time, even if the initial velocities and positions are different.
Motivated by this observation and inspired by the recent work

(Ren, 2008a), we revisit in this paper the coupled second-order
linear harmonic oscillatormodels in a dynamic proximity network.
The topology of proximity network depends on the relative
distances of the harmonic oscillators. The harmonic oscillators
are coupled by their velocity information. We will examine the
synchronization of coupled harmonic oscillators in the dynamic
proximity network without any connectivity assumption. We will
also examine the synchronization of coupled harmonic oscillators
with a leader and in the absence of any connectivity assumption
on the followers.
The remainder of the paper is organized as follows. Section 2

states the problems to be solved in this paper. Section 3 establishes
synchronization results, both without and with a leader. Section 4
presents the simulation results. Finally, Section 5 draws a brief
conclusion to the paper.

2. Problem statement

We consider N agents moving in a one-dimensional Euclidean
space. The behavior of each agent is described by a harmonic
oscillator of the form

q̇i = pi,

ṗi = −ω2qi + ui, i = 1, 2, . . . ,N,
(1)

where qi ∈ R is the position of agent i, pi ∈ R is its velocity vector,
ui ∈ R is its control input and ω is the frequency of the oscillator.
For notational convenience, we also define

q =


q1
q2
...
qN

 , p =


p1
p2
...
pN

 .

The problem of synchronization is to design a control input ui to
cause

lim
t→∞
‖qi(t)− qj(t)‖ = 0,

and

lim
t→∞
‖pi(t)− pj(t)‖ = 0,

for all i and j. In the situationwhere a leader, labeled as agentN+1,
is present, the goal is then to design a control input ui to cause

lim
t→∞
‖qi(t)− qγ (t)‖ = 0,

and

lim
t→∞
‖pi(t)− pγ (t)‖ = 0,

for all i, where qγ and pγ are the position and velocity of the leader,
respectively. The dynamic of the leader satisfies

q̇γ = pγ ,
ṗγ = −ω2qγ .

(2)

In Ren (2008a), N coupled harmonic oscillators are connected by
dampers, i.e.,

ui = −
N∑
i=1

aij(t)
(
pi − pj

)
, i = 1, 2, . . . ,N, (3)

where aij(t) characterizes the interaction between agents i and j
at time t . Under certain network connectivity assumptions and
the influence of the control input (3), synchronization of the
positions and velocities in both fixed and switching networks was
established in Ren (2008a).
In this paper, we investigate the system in a dynamic proxim-

ity network. Each agent has a limited communication capability
which allows it to communicate only with agents within its neigh-
borhood. The neighboring agents of agent i at time t is denoted as:

Ni(t) =
{
j : ‖qi − qj‖ < r, j = 1, 2, . . . ,N, j 6= i

}
,

where ‖ · ‖ is the Euclidean norm. In the above definition, we have
assumed that all agents have an identical influencing/sensing ra-
dius r . During the course of motion, the relative distances between
agents may vary with time, so the neighbors of each agent may
change.Wedefine the neighboring graphG(t) = {V, E(t)} to be an
undirected graph consisting of a set of vertices V = {1, 2, . . . ,N},
whose elements represent agents in the group, and a set of edges
E(t) = {(i, j) ∈ V × V : i ∼ j}, containing unordered pairs of ver-
tices that represent neighboring relations at time t . Vertices i and
j are said to be adjacent at time t if (i, j) ∈ E(t). A path of length
l between vertices i and j is a sequence of l + 1 distinct vertices
starting with i and ending with j such that consecutive vertices in
the sequence are adjacent.

3. Synchronization of coupled harmonic oscillators

3.1. Synchronization without a leader

Let the control input for agent i be given by

ui = −
∑
j∈Ni(t)

aij(q)
(
pi − pj

)
, i = 1, 2, . . . ,N, (4)

where A(q) =
(
aij(q)

)
N×N is the adjacent matrix which is defined

in Olfati-Saber (2006) as

aij(q) =
{
0, if j = i,
ρh
(
‖qj − qi‖σ /‖r‖σ

)
, if j 6= i,
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