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a b s t r a c t

This paper exploits the concept of periodic invariance in order to derive a novel predictive control
algorithm for switched systems. The offline computation here concerns the definition of sequences of
switcheswhich return the state vector to a set after a givennumber ofmoves,while an online optimization
is used to improve performance by exploiting information available on the value of the state at each time
instant. The algorithm is shown to have closed loop stability and to ensure that the state is steered to a
bounded set of ellipsoids centered on the target state. The results of the paper are illustrated by means of
a numerical example.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we provide a novel approach to Receding Horizon
Control (RHC) for Switched Systems. The system dynamics can
be described by a number of linear models, one for each state of
a switching component. For example, two different linear state
space models can be obtained for the case of a switched system
comprising a single switching component with two states, e.g. an
‘‘on’’ and an ‘‘off’’ state. A typical example of such switched system
is a dc–dc power converter. This kind of switching systems can
be considered as a special case of hybrid systems which could
be described in different frameworks (Borrelli, Baotic, Bemporad,
& Morari, 2005; Branicky, Borkar, & Mitter, 1998; Heemels, De
Schutter, & Bemporad, 2001).
RHChas the distinctive advantage that it performs, in a receding

horizon manner, online optimizations which take account of
constraints: explicitly over a finite prediction horizon; implicitly
thereafter, through the use of a terminal set which is invariant
under a fixed terminal state feedback control law, e.g. u = Kx
(Mayne & Michalska, 1993). The concept of invariance can be
overly restrictive and larger sets can be obtained through the
use of periodic-invariance instead (Lee & Kouvaritakis, 2006; Lee,

I This paper was presented at 2006 45th IEEE Conference on Decision and
Control 13–15, December, 2006, San Diego, USA. This paper was recommended for
publication in revised form by Associate Editor Denis Dochain under the direction
of Editor Frank Allgöwer.
∗ Corresponding author. Tel.: +82 2 970 6544; fax: +82 2 972 1237.
E-mail addresses: yilee@snut.ac.kr (Y.I. Lee), basil.kouvaritakis@eng.ox.ac.uk

(B. Kouvaritakis).

Kouvaritakis, & Cannon, 2009) according to which the state is
allowed to be steered outside the setΩ so long as it can be steered
back toΩ through a sequence of predefined state feedback control
moves, u = Kixi, i = 0, 1, 2, . . . ,N − 1.
In Borrelli et al. (2005) and Morari and Baric (2006), explicit

RHC laws have been proposed for hybrid systems. With the
explicit RHC design, the stability guaranteeing terminal constraint
is omitted during the off-line optimization stage in order to reduce
the conservativeness and complexity of the controller design.
Instead, the closed-loop stability is checked after a Piecewise
Affine (PWA) state feedback law is computed from the off-line
optimization. If the resulting PWA state feedback is found to be
unstable, one should carry out the off-line optimization again
with different design parameters. The objective of the on-line part
of the explicit RHC is to evaluate the PWA state feedback law
according to the current state. The explicit RHC was applied to a
dc–dc converter (Beccuti, Papafotiou, Frasca, & Morari, 2007a,b)
by transforming the state average model of the dc–dc converter
to a multi-step hybrid model. The resulting control law is given
as u = Kix to determine the duty ratio of a PWM (Pulse Width
Modulation) control in Beccuti et al. (2007a,b).
In the literature, two main approaches for the feedback reg-

ulation of dc–dc power converters are the PWM feedback strat-
egy (Sira-Ramirez, Perez-Moreno, Ortega, & Garcia-Esteban, 1997)
and the stabilizing sliding regimes method (Utkin, Guldner, & Shi,
1999). The sliding mode methods are known to be better than
PWM controllers in respect of robustness to large-signal pertur-
bations (Tan, Lai, Tse, & Cheung, 2005). The nature of sliding
mode control, however, is to operate ideally at infinite switching
frequencies to make the controlled variables track a certain refer-
ence path. Both the PWM and sliding mode controllers are devel-
oped in continuous time domain. The key problem of sliding mode
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approaches concerns the confinement of the switching frequency
within an affordable limit while suppressing the chattering phe-
nomenon.
This paper exploits the benefits of periodic invariance which,

however, is introduced into the finite horizon of the first N pre-
dicted moves in order to derive an effective means of controlling
the switched systems. In this context, the concept of periodic in-
variance canbe applied to switched systems in such away that a set
Ω around a target is periodically invariant with respect to a partic-
ular switching sequence. Thus, here the system state, starting from
the setΩ , is steered back to the set through the use of a sequence
ofN switchings. Periodic invariance provides a proof of closed loop
stability through the use of results that guarantee contraction to
a bounded ellipsoidal set. In addition, online optimization of the
predicted switching sequence can accelerate convergence (to the
origin, or the bounded set) and thus enhances performance. The
results of the paper are illustrated by simulations performed on
a model of a simple dc–dc power converter problem. Unlike ear-
lier RHC methods on the control of dc–dc converter (Beccuti et al.,
2007a,b), it does not require averaged models of the switched sys-
tems and can be readily applied to dc–dc converters with multiple
switching components.

2. Problem formulation

Consider a switched system having one switching component;
extension of the results of the paper to the general case is straight-
forward and is omitted for the sake of clarity of presentation.
Depending onwhether the switch is on or off, the dynamics of such
a system are described by:
Switch on: xk+1 = A1xk + B1w (1)
Switch off: xk+1 = A2xk + B2w (2)
where x ∈ Rn×1 is the state vector and w is the strength of a con-
stant voltage (or current) source. This kind of formulation can be
applied to many types of switching power converters. The control
objective is to select the switching sequence so as to maintain x
as close as possible to a given reference state, χ , defined by two
virtual system models:
χ = Av1χ + B1w (3)

χ = Av2χ + B2w (4)
for which χ is clearly an equilibrium state. Subtraction of (3)–(4)
from (1)–(2), respectively, gives:
Switch on: zk+1 = A1zk + (A1 − Av1)χ (5)

Switch off: zk+1 = A2zk + (A2 − Av2)χ (6)
where zk := xk − χ denotes the error state vector. In this setting,
the control objective is equivalent to the selection of switching be-
tween the on/off states so as to make the error state, zk, as small as
possible. The purpose of this paper is to propose a novel strategy
for meeting this objective.

3. Switching and periodic invariance

For the case considered here (i.e. for a single switching
component with two switching states (on/off) over a horizon of
N predicted switchings) there is a set Σ of 2N possible predicted
switching sequences (comprising N elements each assuming the
values of 1 or 2). Over Σ it is possible to extend the concept of
periodic invariance:

Definition 1. A set Eo is defined to be periodically invariant with
respect to Σ if there exists a switching sequence S ∈ Σ which
steers all initial states xk ∈ Eo to an end state xk+N ∈ Eo.
The definition above does not imply contraction. However,

in the sequel, conditions will be given under which repeated
application of the switching sequence specified in Definition 1

would result in contraction for initial conditions which are
sufficiently far from the reference state, and that this process of
contraction carries on until the state comes to be sufficiently close;
the meaning of both the terms ‘‘sufficiently far’’ and ‘‘sufficiently
close’’ to the reference state will be made precise through the
statement of the relevant results given later in this section. Thus,
periodic invariance, hereafter abbreviated as PI, can be used as the
basis for the derivation of closed loop practical stability. However
before the presentation of the stability results, PI conditions are
derived for the case of ellipsoidal sets:

Ej :=
{
z|zTPjz ≤ aj

}
, Pj > 0, j = 0, 1, . . . ,N − 1. (7)

This will be achieved through the use of the augmented ellipsoids
defined on an augmented state vector ẑ := [χT zT]T:

Êj :=
{
ẑ|ẑTP̂jẑ ≤ bj

}
, j = 0, 1, . . . ,N − 1, (8)

where P̂j := diag(Πj, Pj) with Πj, Pj being n-dimensional positive
definite matrices, and bj := aj + χTΠjχ . The dynamics of the
augmented state are described by

ẑj+1 = Ãjẑj, j = 0, 1, . . . ,N − 1, (9)
where, depending on whether the jth element of the switching
sequence S is 1 or 2, the matrix Ãj assumes one of the two values,
respectively:

Â1 :=
[

I 0
A1 − Av1 A1

]
Â2 :=

[
I 0

A2 − Av2 A2

]
. (10)

From (9), it is easy to see that:

P̂j − ÃTj P̂j+1Ãj > 0; j = 0, 1, . . . ,N − 1, (11)

implies that ẑTj+1P̂j+1ẑj+1 < ẑTj P̂jẑj so that through a recursive use
of (11) for j = 0, 1, . . . ,N − 1 it follows that ẑTN P̂N ẑN < ẑT0P̂0ẑ0,
which can be rearranged as:

zTNPNzN < zT0P0z0 + β0, (12)

where β0 := χT(Π0−ΠN)χ . These conditions will be used, below,
to establish the fact that recursive use of a switching sequence
which satisfies (11) results in contraction for an initial condition
which is ‘‘sufficiently far’’ from the reference state (as stated in
Theorem 1) and leads to periodic invariance for initial conditions
which are ‘‘sufficiently near’’ to the reference state (Theorem 2).

Theorem 1. Let there exist a switching sequence S and matrices P̂j
such that the LMI conditions[
P̂j (P̂j+1Ãj)T

P̂j+1Ãj P̂j+1

]
> 0, j = 0, . . . ,N − 1 (13)

hold true with Pj,Πj > 0, where Ãj is determined to be Â1 or Â2
depending on the jth element of the switching sequence S. If there exists
0 < γ < 1 satisfying

PN ≥
1
γ
P0 (14)

then, for initial conditions which are ‘‘sufficiently far’’ from the
reference state χ in the sense that

zT0P0z0 >
γβ0

1− γ
, (15)

application of the switching sequence S ensures the contraction
condition

zTNP0zN < zT0P0z0. (16)

Proof. On account of (11), which is equivalent to (13), zN must
satisfy (12) and over all zN that satisfy (12) the zN that maximizes
zTNP0zN , say z

∗

N , must be such that (12) holds with equality. Hence
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