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a b s t r a c t

A neural-network-based adaptive controller is proposed for the tracking problem of manipulators
with uncertain kinematics, dynamics and actuator model. The adaptive Jacobian scheme is used to
estimate the unknown kinematics parameters. Uncertainties in the manipulator dynamics and actuator
model are compensated by three-layer neural networks. External disturbances and approximation errors
are counteracted by robust signals. The actuator controller is designed based on the backstepping
scheme. Compared with the existing work, the proposed method considers the manipulator kinematics
uncertainty, does not need the ‘‘linearity-in-parameters’’ assumption for the uncertain terms in the
dynamics ofmanipulator and actuator, and guarantees the tracking error to be as small as desired. Finally,
the performance of the proposed approach is illustrated by the simulation example.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, several adaptive controllers have been proposed to
deal with the manipulator trajectory tracking problem in the pres-
ence of dynamics uncertainties (see the survey (Ortega & Spong,
1989)). However, a critical assumption in these controllers is that
the uncertain term should satisfy the ‘‘linearity-in-parameters’’
condition. Moreover, tedious analysis and computations have to
be done to determine the regressor matrix. To overcome these
drawbacks, a class of neural-network-based adaptive approaches
has been proposed for the manipulator tracking problem (Kwan,
Lewis, & Dawson, 1998; Lewis, Jagannathan, & Yesildirek, 1998).
For the general framework of this neural-network-based method,
the readers are referred to Farrell and Polycarpou (2006).
It is noted that most existing controllers are designed for the

joint trajectory tracking (Kwan et al., 1998; Lewis et al., 1998;
Ortega & Spong, 1989). However, on many occasions, it is more
convenient to drive the end-effector to follow a given trajectory
in the Cartesian space. In this case, the manipulator kinematics
should be considered. Due to the imprecise measurement of
physical parameters and the interaction between manipulator
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and different environments, the kinematics parameters may not
be known a priori. As reported in Arimoto (1999), the research
on the control problem with uncertain kinematics is just a
beginning. To deal with the kinematics uncertainty, some results
have been publishedwhich are based on the approximate Jacobian
technique (Cheah, Kawamura, & Arimoto, 2003; Dixon, 2007).
However, these methods focus on the setpoint control of a
robot. As to the tracking control, Cheah, Liu, and Slotine (2004)
suggested an adaptive Jacobian approach for the non-redundant
robot with uncertain kinematics and dynamics. Extensions to the
redundant robots and unknown actuator parametersweremade in
Cheah, Liu, and Slotine (2006). Braganza, Dixon, Dawson, and Xian
(2008) also presented a tracking controller for manipulators with
uncertain kinematics and dynamics; the unit quaternion was used
to represent the orientation ofmanipulator end-effector. It is noted
that controllers proposed in Braganza et al. (2008), Cheah et al.
(2003), Cheah et al. (2004), Cheah et al. (2006), and Dixon (2007)
employed the traditional adaptive control scheme to deal with the
uncertain dynamics of manipulator and actuator. Therefore, they
suffer from the ‘‘linearity-in-parameters’’ assumption and other
aforementioned drawbacks. In addition, external disturbances
in manipulator dynamics have been neglected in the controller
design.
This paper addresses the manipulator tracking problem in

the presence of uncertain kinematics, dynamics, and actuator
model. Adaptive Jacobin method, neural network approxima-
tion, and the backstepping method are employed to design the
tracking controller. The contributions of this paper are: (1) the
manipulator kinematics uncertainty is considered in the controller
design; (2) compared with the previous work (Braganza et al.,
2008; Cheah et al., 2003, 2004, 2006; Dixon, 2007), the ‘‘linearity-
in-parameters’’ assumption for the uncertain dynamics of manip-
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ulator and actuator is not necessary, and external disturbances
in the dynamics of manipulator and actuator are taken into ac-
count; (3) the tracking error can be reduced as small as desired
by choosing appropriate controller parameters. Therefore, the pro-
posed method contributes to the current literature. This work is
an extension to the conference papers (Cheng, Hou, & Tan, 2008;
Cheng, Hou, Tan, &Wang, 2008), which considers the uncertain ac-
tuator model and further analyzes the tracking performance.

Notations. For a given vector, ‖ · ‖ denotes the vector Euclidean
norm; for a givenmatrix, ‖ ·‖F denotes thematrix Frobenius norm;
In denotes the n-dimensional unity matrix; (·)i denotes the ith
element of a given vector; λmin(·) and λmax(·) are the minimum
and maximum eigenvalues of a given matrix, respectively; Tr(·)
denotes the trace operator.

2. Problem formulation and preliminaries

2.1. Manipulator-plus-actuator system description

The dynamics model for a rigid n-link, serially connected
manipulator can be expressed as (Lewis et al., 1998)

M(q)q̈+ V (q, q̇)q̇+ G(q)+ τed = τ , (1)

where q, q̇, q̈ ∈ Rn denote the joint position, velocity, and
acceleration vectors, respectively; M(q) ∈ Rn×n is the inertia
matrix; V (q, q̇) ∈ Rn×n is the centripetal-Coriolis matrix; G(q) ∈
Rn is the gravitational vector; τed ∈ Rn denotes the bounded
unknown disturbance vector including unstructured unmodeled
dynamics, and it is assumed that ‖τed‖ ≤ ∆τed; τ ∈ Rn represents
the torque input vector. Two important properties of the dynamics
equation described by (1) are given as follows (Lewis et al., 1998).

Property 1. The inertia matrix M(q) is symmetric and positive
definite, and satisfies: m1‖y‖2 ≤ yTM(q)y ≤ m2‖y‖2, ∀y ∈ Rn,
where m1 and m2 are known positive constants.

Property 2. The time derivative of the inertia matrix and the
centripetal-Coriolis matrix satisfy the skew symmetric relation; that
is, yT

(
Ṁ(q)− 2V (q, q̇)

)
y = 0, ∀y ∈ Rn.

For simplicity, it is assumed that the manipulator is driven
by armature-controlled DC motors with voltages being input to
amplifiers. The dynamics of this type of motor can be described
as follows (Cheah et al., 2006)

τ = KT I, (2a)

Lİ + RI + Keq̇+ ued = u, (2b)

where I ∈ Rn is the armature current vector; u ∈ Rn is
the armature voltage vector; ued ∈ Rn is the additive bounded
voltage disturbance vector, and it is assumed that ‖ued‖ ≤ ∆ued;
KT ∈ Rn×n is the positive definite constant diagonal matrix
which characterizes the electro-mechanical conversion between
current and torque; R, L, Ke ∈ Rn×n are the positive definite
constant diagonal matrices denoting the circuit resistance, circuit
inductance, and voltage constant of the motor, respectively. And it
is assumed that the following bounded condition holds

k1‖x‖2 ≤ xTKT x ≤ k2‖x‖2, ∀x ∈ Rn, (3)

where k1 and k2 are known positive constants.
By (2a) and (2b), it follows that

Lτ̇ + Rτ + KTKeq̇+ KTued = KTu. (4)

Let x ∈ Rm (m ≤ n) represent the Cartesian space position
vector which is related to the manipulator joint vector as x =
h(q), where h(q) ∈ Rm is the differentiable forward kinematics of
the manipulator. The Cartesian space velocity ẋ is related to joint

velocity q̇ as
ẋ = J(q, φJ)q̇, (5)
where φJ ∈ Rp represents the kinematics parameters, such as link

lengths and joint offsets; J(q, φJ)
def
= (∂h/∂q) ∈ Rm×n denotes the

manipulator Jacobian matrix which has the following property.

Property 3. The product of the manipulator Jacobian matrix with the
joint velocity vector can be linearly parameterized as

J(q, φJ)q̇ = YJ(q, q̇)φJ , (6)

where YJ(q, q̇) ∈ Rm×p is called the kinematics regressor matrix
which can be computed directly by the measurable joint position and
velocity vectors q and q̇.

2.2. Multi-layer neural networks

The three-layer neural network, shown in Fig. 1, is usually used
for the function approximation. The output of neural network can
be determined as follows

yi =
Nh∑
j=1

[
wijσ̄

(
Ni∑
k=1

vjkzk + θvj

)
+ θwi

]
, i = 1, . . . ,No, (7)

where Ni, Nh and No denote the numbers of input-layer neurons,
hidden-layer neurons and output-layer neurons, respectively; wij
and vjk are the adjustable synaptic weights, respectively. The
threshold offsets are denoted by θwi and θvj; σ̄ (·) is the sigmoid
activation function

σ̄ (s) =
1

1+ e−s
. (8)

For convenience, Eq. (7) can be rewritten in the following compact
form
y = Wσ (V z̄) , (9)
whereW ∈ RNo×(Nh+1), V ∈ RNh×(Ni+1) are augmentedweight ma-
trices; z̄ = [1, z1, z2, . . . , zNi ]

T
∈ RNi+1; y = [y1, y2, . . . , yNo ]

T
∈

RNo ; σ (V z̄) =
[
1, σ̄

(
Vr1 z̄

)
, σ̄
(
Vr2 z̄

)
, . . . , σ̄

(
VrNh z̄

)]T
∈ RNh+1

(Vri represents the ith rowofmatrix V ). It is emphasized thatσ(·) is
amap fromRNh toRNh+1. By this augmented expression, θwi and θvj
are included as the first columns ofW and V , respectively. There-
fore, any tuning of W and V will include tuning of the thresholds
as well.
Let S be a compact simply connected set of RNi , and g(z) be a

continuous function from S to RNo . Then, for any given positive
constant εN , there exist ideal parametersW ∗, V ∗, Nh such that

g(z) = W ∗σ(V ∗z̄)+ ε, (10)
where ε is the bounded function approximation error with ‖ε‖ <
εN in S.

Assumption 1. The ideal neural network parameters are bounded
by some positive values. That is ‖V ∗‖F ≤ VM and ‖W ∗‖F ≤ WM .
It should be noted that W ∗ and V ∗ are only quantities

required for analytical purpose. In real control applications, their
estimations Ŵ and V̂ are used for the function approximation.
Then the estimation of g(z) is given by

ĝ(z) = Ŵσ(V̂ z̄). (11)

Lemma 1. For the neural network defined by (11), the function
approximation error is, ĝ(z) − g(z) = W̃

(
σ(V̂ z̄)− σ̂ ′(V̂ z̄)V̂ z̄

)
+

Ŵ σ̂ ′(V̂ z̄)Ṽ z̄ + du, where σ̂ ′(V̂ z̄) = [0, diag{σ̂ ′1, σ̂
′

2, . . . , σ̂
′

Nh
}]
T
∈

R(Nh+1)×Nh with σ̂ ′i = dσ̄ (s)/ds|s=V̂ri z̄ and 0 = (0, 0, . . . , 0)T ∈
RNh ; It is emphasized that σ̂ ′(·) is a map from RNh to R(Nh+1)×Nh ; the
weight estimation errors are W̃ = Ŵ −W ∗ and Ṽ = V̂ − V ∗; and
the residual term is du = W̃ σ̂ ′(V̂ z̄)V ∗z̄ + W ∗O(Ṽ z̄)2 − ε, which is
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