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a b s t r a c t

The stability of a reduced-order filter (ROF), the gain of which is constructed on the basis of a subspace
of dominant singular vectors of the system dynamics, is examined. A definition of s-detectability is
introduced. It is found that the observability of all unstable and neutral singular vectors (s-detectability)
is a sufficient condition for the existence of a stable filter.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

One of great challenges for future control theory is related
to theoretical and practical studies on estimation and control in
very high dimensional systems which represent discretized ver-
sions of systems of partial differential equations. Such systems are
available, for example, in many meteorological and oceanography
centers which serve as numerical models for simulating and fore-
casting the circulation of fluid dynamics. With degree of freedom
106–107, it is simply impossible to apply the classical control and
filtering algorithms (such as the Kalman filter (KF), for example) to
these systems.
To deal with filtering problems in very high dimensional sys-

tems, a reduced order adaptive filter (ROAF) has been proposed in
Hoang, DeMey, Talagrand, and Baraille (1997) and Hoang, Baraille,
and Talagrand (2005). In the ROAF, reduction is performed directly
on the filter gain. The procedure to determine which parameters
of the gain can be adjusted to data and to what extent their values
can vary is very important for ensuring stability of the filter. This
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question has been studied in Hoang, Baraille, and Talagrand (2001)
using the eigenvalue decomposition (EVD) of the systemdynamics.
A natural approach to filter reduction is to performdirectmodel

reduction on a high-order filter using a model reduction such as
balanced truncation (see Fairman, 1977; Moore, 1981; Pernebo &
Silverman, 1982), Hankel-norm approximation ((Glover, 1984)),
optimal L2 reduction ((Yan, Xie, & Lam, 1997)) and optimal H2 re-
duction ((Xie, Yan, & Soh, 1999)). In Xie et al. (1999), parameteri-
zation of a set of filters of fixed order leads to stable filtering error
transfer functions for a general class of unstable system dynam-
ics. The question on minimizing the H2-norm of the filtering error
transfer function is also addressed. We note that at first glance
the objective of this work is somewhat similar to that studied in
Hoang et al. (2001). However, looking at this work in detail reveals
that whereas in Xie et al. (1999) the stability of the filter for the re-
duced state xe(t) is studied, the objective in Hoang et al. (2001) is
to design a stable filter for estimating the full system state x(t), and
reduction is performed only on the filter gain. Moreover, in Hoang
et al. (2001) the algorithm for gain design is entirely based on the
dominant part of the EVD of the system dynamics. On the other
hand, Eqs. (10)–(12) (Theorem 1) in Xie et al. (1999) for the ROF
depend on the dynamics matrix and on the gain of the full-order
KF, which makes the problem of implementation of such filters for
very high dimensional dynamical systems unrealizable in practice.
It should bementioned that by exploiting somedominant direc-

tions of error growth (dominant singular vectors) Cohn and Todling
(1996) showed froma twin experiment on data assimilation for the
two-dimensional, linear shallow-water model that the PSF (Partial
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Singular Value Decomposition Filter) must account for all singular
vectors (SVs)with singular values larger or equal to 1, for otherwise
the PSF diverges.
This paper focuses on the conditions ensuring stability of the

filter based on leading SVs. One of great advantages of the SVD
approach is that the leading SVs of a very large sparse matrix
can be computed efficiently using the Lanczos algorithm (Golub
& van Loan, 1996). Moreover, unlike the eigenvectors (EVs) and
eigenvalues which may be complex, the SVs are real and the
singular values are positive.
In Section2, brief descriptions of the PSF and theROAF are given.

In what follows, an ROF with projection subspace constructed on
the basis of a partial SVD is denoted an SROF. The notation PSF
refers to a Kalman-like version of an SROF (to reserve its original
version proposed in Cohn and Todling (1996)). The main results
and proofs on stability of the SROF are presented in Section 3.
Application of the results in Section 3 to deduce the stability of the
PSF will be addressed in Section 4. This study allows us to seek the
gains with stabilizing structures for adaptive purposes (Section 5).
The conclusion is given in Section 6.

2. PSF and ROAF

2.1. Partial singular value decomposition filter (PSF)

Consider a linear filtering problem for the dynamical system

x(t + 1) = Φx(t)+ w(t), (1)
z(t + 1) = Hx(t + 1)+ v(t + 1), t = 0, 1, 2, . . . . (2)

In (1) and (2), x(t) ∈ Rn is the system state (n is of order 106–107),
z(t) ∈ Rp is the observation, and the model error w(t) is a zero
mean white noise with the covariance Q (t). In (2), H is the known
observation operator, and v(t) represents the measurement error
which is assumed to be white with zero mean and covariance R(t).
The sequencesw(t) and v(t) are mutually independent.
The main idea underlying the PSF of Cohn and Todling (1996) is

to replaceΦ by its partial SVDΦ1 (see (6) below). Let us introduce
the filter

x̂(t + 1) = Φ x̂(t)+ K(t + 1)ζ (t + 1)
= L(t)x̂(t)+ K(t + 1)z(t + 1), (3)

L(t) := [I − K(t + 1)H]Φ, ζ (t + 1) = z(t + 1)− HΦ x̂.

In the KF,

K(t + 1) = M(t + 1)HT[HM(t + 1)HT + R]−1, (4)
M(t + 1) = ΦP(t)ΦT + Q ,
P(t + 1) = [I − K(t + 1)H]M(t + 1).

LetΦ = UDV T be SVD ofΦ . Introduce

U = [U1,U2], V = [V1, V2], D = diag[D1,D2] (5)

where U1, V1 are of dimensions (n × ν), U2, V2 are [n × (n − ν)]
matrices, and D1,D2 are (ν × ν) and [(n− ν)× (n− ν)] matrices,
respectively. The diagonal elements σi of D are known as singular
values, and the columns ofU and V as the left and the right SVs.We
have

Φ = Φ1 + Φ2, Φ1 := U1D1V T1 , Φ2 := U2D2V T2 (6)

where D1 = diag [σ1, . . . , σν] is composed from the first ν leading
singular values of Φ; U1 and V1 are composed from leading left
and right SVs. Let ν denote the number of all unstable and neutral
singular values of Φ , i.e. σk ≥ 1 for all k = 1, . . . , ν, σk < 1 for
k = ν + 1, . . . , n. Roughly speaking, the PEF in Cohn and Todling
(1996) is obtained by replacing Φ by Φ1 in the expressions for
M(t), P(t) in (4).

2.2. Reduced-order adaptive filter (ROAF)

In Hoang et al. (1997), the gain K in (3) is postulated to be of the
form

K = PrKe (7)

where Pr is an a priori known n × ne matrix (ne < n), and Ke is
an (ne × p) matrix representing a gain in the filter for the reduced
state xe(t) of dimension ne. Parameterization of K is proposed to be
done in Ke = Ke(θ). The filter for x(t) has the form

x̂(t + 1) = Φ x̂(t)+ PrKeζ (t + 1). (8)

The optimal ROAF is obtained by minimizing the mean
prediction error (MPE) of the system output using θ as a control
vector. Its application to the problem of estimating the oceanic
circulation using sea surface height data in the oceanic model
MICOM has been studied in Hoang et al. (2005).

3. Main stability results

3.1. Stability of the SROF

For an n vector x let ‖x‖ := ‖x‖2 denote the l2 norm of x. The
matrix norm is defined as that associated with the l2 vector norm.
Thus for an (n × p) matrix A, ‖A‖ = σ1, where σ1 is the largest
singular value of A.
Consider the linear stochastic system

y(t + 1) = A(t)y(t)+ ξ(t), t = 1, 2, . . . , y(0) = y0 (9)

where ξ(t) is a zero mean random sequence of finite variance.
Assume that√
E‖ξ(t)‖2 ≤ σξ <∞ (10)

where σξ is independent of t . Let y(t, y0, ξ) be the solution of (9)
subject to the initial y(0) = y0 and the input sequence ξ(t).

Definition 3.1. Consider the system (9) and suppose that y(0) is a
random vector of finite two first moments. The system (9) is said
to be mean square (m.s.) stable if

lim
t→∞

√
E‖y(t, y0, ξ)‖2 <∞.

Subtraction of (1) from (3) gives the following equation for the
filtered error e(t) = x̂(t)− x(t):

e(t + 1) = L(t)e(t)+ η(t), (11)

where η(t) := K(t + 1)v(t + 1) − [I − K(t + 1)H]w(t), L(t) :=
[I − K(t + 1)H]Φ .
Consider the filter (3) with the time-invariant gain (7). Then

L(t) = L is time-invariant. In the block matrix (5) let ν be a non-
negative integer number such that

σν+1 ≤
ε

‖B‖
, B := KeH for some fixed ε ∈ (0, 1). (12)

For the sake of simplicity we first introduce the condition

In (2) the (p× n) matrixHis such that rank[He] = ν (13)

whereHe = HU1. We emphasize that this condition requires p ≥ ν
and the ν columns of He to be linearly independent.

Lemma 3.1. Consider the SVD (6) and introduce the block matrix
D̃(2) =

∣∣∣ −AIn−ν∣∣∣ and D̃(1) = [Iν, A], A = KeHU2. Then
‖D̃(2)‖ = ‖D̃(1)‖ = ‖KeH‖.

Proof. We have ‖D̃(2)‖2 = σ1[C (2)], C (2) = D̃(2),T D̃(2) = I +
ATA. Analogously, ‖D̃(1)‖2 = σ1[C(1)], C(1) = D̃(1)D̃T(1) = I + AA

T.
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