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a b s t r a c t

We propose a general framework for investigating a large class of stabilization problems in Markovian
quantum systems. Building on the notions of invariant and attractive quantum subsystem, we
characterize attractive subspaces by exploring the structure of the invariant sets for the dynamics. Our
general analysis results are exploited to assess the ability of open-loop Hamiltonian and output-feedback
control strategies to synthesize Markovian generators which stabilize a target subsystem, subspace,
or pure state. In particular, we provide an algebraic characterization of the manifold of stabilizable
pure states in arbitrary finite-dimensional Markovian systems, that leads to a constructive strategy for
designing the relevant controllers. Implications for stabilization of entangled pure states are addressed
by example.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Stabilization problems have a growing significance for a
variety of quantum control applications, ranging from state
preparation of optical, atomic, andnano-mechanical systems to the
generation of noise-protected realizations of quantum information
in realistic devices (Knill, 2006; Knill, Laflamme, & Viola, 2000).
Dynamical systems undergoing Markovian evolution (Alicki &
Lendi, 1987; Breuer & Petruccione, 2006) are relevant for typifying
irreversible quantum dynamics and present distinctive control
challenges (Altafini, 2003). In particular, open-loop quantum-
engineering and (approximate) stabilization methods based on
dynamical decoupling cease to be viable in the Markovian
regime (Lloyd & Viola, 2001; Viola, Knill, & Lloyd, 1999). Our
goal in this work is to show how a wide class of Markovian
stabilization problems can nevertheless be effectively treated
within a general framework, provided by invariant and attractive
quantum subsystems.
After providing the relevant technical background, we proceed

to establish a first analysis result that fully characterizes the
attractive subspaces for a given generator. This is doneby analyzing
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the structure induced by the generator in the system’s Hilbert
space, and by invoking Krasovskii–LaSalle’s invariance principle.
We next explore the application of the result to stabilization
problems forMarkovianHamiltonian andoutput-feedback control.
Our approach leads to a complete characterization of the
stabilizable pure states, subspaces, and subsystems as well as to
constructive design strategies for the control parameters. While
some partial results in this sense have been presented in Ticozzi
and Viola (2008) and Viola and Ticozzi (2007), twomajor advances
stem from the fact that all the stabilization conditions identified in
the present analysis are both necessary and sufficient (as opposed
to mostly sufficient criteria in Ticozzi and Viola (2008)) and
applicable to arbitrary finite-dimensional systems, further extending
the results for two-level systems in Ticozzi and Viola (2008). We
refer to Ticozzi and Viola (2008) for a more detailed discussion
of the connection between invariant, attractive, and noiseless
subsystems, along with a thorough analysis of model robustness
issues which shall not be our focus here.

2. Preliminaries and background

2.1. Quantum dynamical semigroups

Throughout our analysis, we shall consider a finite-dimensional
quantum system Q. Following the standard quantum-statistical
mechanics formalism (Sakurai, 1994), we associate to Q a
(separable) Hilbert spaceH over the complex fieldC. Using Dirac’s
notation, let the vectors be represented by a ket |ψ〉 ∈ H ,
and linear functionals by a bra, 〈ψ | ∈ HĎ, respectively. The
inner product of |ψ〉, |ϕ〉 is then represented as 〈ψ |ϕ〉. Let B(H)
represent the set of linear bounded operators on H , with H(H)
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denoting the real subspace of Hermitian operators, and I, O being
the identity and the zero operator, respectively. Our (possibly
uncertain) knowledge of the state of Q is contained in a density
operator ρ on H , with ρ ≥ 0 and trace(ρ) = 1. Density
operators form a convex setD(H) ⊂ H(H), with one-dimensional
projectors corresponding to extreme points (pure states, ρ|ψ〉 =
|ψ〉〈ψ |). Observables are represented by Hermitian operators in
H(H), and expectation values are computed by using the trace
functional:Eρ(X) = trace(ρX). IfQ consists of twodistinguishable
quantum systemsQ1, Q2, the corresponding description is carried
out in the tensor product space,H12 = H1 ⊗H2, observables and
density operators being associated with Hermitian and positive-
semidefinite, normalized operators on H12, respectively. The
partial trace over H2 is the unique linear operator trace2(·) :
B(H12) → B(H1), ensuring that for every X1 ∈ B(H1), X2 ∈
B(H2), trace2(X1 ⊗ X2) = X1trace(X2). Partial trace is used to
compute marginal states and partial expectations.
In the presence of either intended or unwanted couplings (such

as with ameasurement apparatus, or with a surrounding quantum
environment), the evolution of a subsystem of interest is no longer
unitary and reversible, and the formalism of open quantum systems
is required (Alicki & Lendi, 1987; Breuer & Petruccione, 2006). A
wide class of open quantum systems obey Markovian dynamics
(Alicki & Lendi, 1987; Breuer & Petruccione, 2006; Gorini, Frigerio,
Verri, Kossakowski, & Sudarshan, 1978; Lindblad, 1976). Let I
denote the physical system of interest, with associated Hilbert
spaceHI , dim(HI) = d. Assume that we have no access or control
over the system’s environment, and that the dynamics inD(HI) is
continuous in time and described at each instant t ≥ 0 by a Trace-
Preserving Completely Positive (TPCP) linear map (Kraus, 1983). If
a forward composition law is also assumed, we obtain a quantum
Markov process, or Quantum Dynamical Semigroup (QDS).
Due to the trace- and positivity-preserving assumptions, a QDS

is a semigroup of contractions (with respect to theHilbert–Schmidt
norm). As proven in Lindblad (1976) and Gorini, Kossakowski, and
Sudarshan (1976), the Hille–Yoshida generator for the semigroup
exists and can be cast in the following canonical form ρ̇t = L(ρt),
where

L(ρt) = −
i
h̄
[H, ρt ] +

p∑
k=1

(
LkρtL

Ď
k −

1
2
{LĎkLk, ρt}

)
. (1)

The effective Hamiltonian H and the noise operators Lk (also
known as ‘‘Lindblad operators’’) completely specify the dynamics,
including the effect of the Markovian environment. In general,
H is equal to the Hamiltonian for the isolated, free evolution of
the system, H0, plus a correction, HL, induced by the coupling to
the environment (aka ‘‘Lamb shift’’). The non-Hamiltonian terms
D(Lk, ρ(t)) in (1) account for the non-unitary character of the
dynamics, specified by noise operators {Lk}.
In principle, the form of the generatorLmay be rigorously de-

rived from a Hamiltonian model for the joint system-environment
dynamics under appropriate limiting conditions (the so-called
‘‘singular coupling limit’’ or the ‘‘weak coupling limit,’’ respec-
tively (Alicki & Lendi, 1987; Breuer & Petruccione, 2006)). In most
practical situations, however, such a derivation is unfeasible, since
the full microscopic Hamiltonian is unavailable. A Markovian gen-
erator of the form (1) is then postulated on a phenomenological ba-
sis, and available knowledge about the noise effects used to infer
a specific set of operators Lk (not necessarily orthogonal or com-
plete) in (1). Physically, each such operator may be associated to a
distinct noise channel, bywhich information irreversibly leaks from
the system to the environment.

2.2. Quantum subsystems: Invariance and attractivity

Quantum subsystems are the basic building blocks for describ-
ing composite systems in quantum mechanics (Sakurai, 1994), and
provide a general framework for scalable quantum information
engineering in physical systems. In fact, the so-called subsystem
principle (Knill, 2006; Knill et al., 2000) states that any ‘‘faithful’’
representation of information in a quantum system requires to
specify a subsystem that encodes the desired information. Many
of the control tasks considered in this paper are motivated by the
need for strategies to create andmaintain quantum information in
open quantum systems. A definition of quantum subsystem suit-
able to our context is the following:

Definition 1 (Quantum Subsystem). A quantum subsystem S of a
system I defined onHI is a quantum system whose Hilbert space
is a tensor factorHS of a subspaceHSF ofHI ,

HI = HSF ⊕HR = (HS ⊗HF )⊕HR, (2)

for some co-factor HF and remainder space HR.1 The set of
linear operators on S, B(HS), is isomorphic to the (associative)
subalgebraB(HI) of operators of the form XI = XS ⊗ IF ⊕ OR.

Let n = dim(HS), f = dim(HF ), r = dim(HR), and let
{|φSj 〉}

n
j=1, {|φ

F
k 〉}
f
k=1, {|φ

R
l 〉}
r
l=1 be orthonormal bases for HS, HF ,

HR, respectively. The decomposition (2) is then naturally associ-
ated with the following basis forHI :

{|ϕm〉} = {|φ
S
j 〉 ⊗ |φ

F
k 〉}
n,f
j,k=1 ∪ {|φ

R
l 〉}
r
l=1.

This induces a block structure formatrices acting onHI , whichwill
be used to represent densitymatrices, observables, and generators:

X =
(
XSF XP
XQ XR

)
, (3)

where, in general, XSF 6= XS ⊗ XF . We denote byΠSF the projector
onto HSF , whereas Π̄SF : HI → HS represents its reduction
Π̄SF =

(
ISF 0

)
. In this paper, we study Markov dynamics of

a quantum system I with a given decomposition of the associated
Hilbert space of the form (2), with respect to the subsystem S
associated to HS . By describing the dynamics in the Schrödinger
picture (i.e., with evolving states and time-invariant observables),
the first step is to specify whether I has been properly initialized
in a state which faithfully represents a state of S, and what is the
structure of such states.

Definition 2 (State Initialization). The system I with state ρ ∈
D(HI) is initialized in HS with state ρS ∈ D(HS) if the blocks of
ρ satisfy:
(i) ρSF = ρS ⊗ ρF for some ρF ∈ D(HF );
(ii) ρP = 0, ρR = 0.

We denote by IS(HI) the set of states that satisfy (i)–(ii) for some
ρS .

Condition (ii) guarantees that ρ̄S = traceF (ΠSFρΠ
Ď
SF ) is a valid

(normalized) state of S, while (i) ensures that measurements or
dynamics affectingHF have no effect on the state inHS . In the case
of a simple subspace decomposition, we haveHI = HS⊕HR, with
HF ≈ C, so that (i) becomes trivial. IS(HI) then indicates the set
of states satisfying (ii) for the given subspace.
We now proceed to characterize in which sense, and under

which conditions, a quantum subsystem may be defined as
invariant. Recall that a setW is said to be invariant for a dynamical

1 Note that in control theory a splitting of the above form is referred to
as identifying a ‘‘submanifold’’, while ‘‘subsystem’’ usually refer to dynamical
properties.
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