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a b s t r a c t

We present a class of modified circumcenter algorithms that allow a group of agents to achieve ‘‘practical
rendezvous’’ when they are only able to take noisymeasurements of their neighbors. Assuming a uniform
detection probability in a disk of radius σ about each neighbor’s true position, we show how initially
connected agents converge to a practical stability ball. More precisely, a deterministic analysis allows us
to guarantee convergence to such a ball under r-disk graph connectivity in 1D under the condition that
r/σ be sufficiently large. A stochastic analysis leads to a similar convergence result in probability, but for
any r/σ > 1, and under a sequence of switching graphs that contains a connected graph within bounded
time intervals. We include several simulations to discuss the performance of the proposed algorithms.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The topic of distributed algorithms for robotic networks is at-
tracting intense research activity in recent years; see e.g., Kumar,
Leonard and Morse (2004). As a consequence of this, a wealth
of algorithms are being proposed together with novel analysis
tools to evaluate their performance. Clearly, an important aspect
to consider is that of robustness to measurement and communica-
tion disturbance. If possible, a characterization of what typical de-
graded behaviors are, and how these are affected by the network
size should be provided. When the characterized behavior is not
satisfactory, the performed analysis may help find an alternative
solution.
Motivated by this, we discuss how the nonlinear Circumcenter

Algorithm, see Ando, Oasa, Suzuki, and Yamashita (1999), can
be made robust with respect to measurement noise. This
complements the work in Ando et al. (1999), which observed
good performance of the algorithm in simulation, and the
work in Cortés, Martínez, and Bullo (2006), Flocchini, Prencipe,
Santoro, and Widmayer (2001) and Lin, Morse, and Anderson
(2007a), which respectively considered asynchronous versions
of the algorithm, and proved convergence under sequences of
switching graphs. Other related papers include Kingston, Ren,
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and Beard (2005), Schenato and Zampieri (2006) and Xiao, Boyd,
and Kim (2007), which study how consensus algorithms are
robust to communication, measurement noise and quantization
errors. However, the type of algorithms considered in these works
are linear, while the Circumcenter Algorithm is nonlinear and
agents’ motion is constrained. For simplicity, we consider here
first-order dynamics for each agent. Rendezvous algorithms for
nonholonomic vehicles has been studied in; e.g., Dimarogonas and
Kyriakopoulos (2007).
The contributions of this paper can be summarized as follows.

First, we propose an alternative to the standard Circumcenter
Algorithm. The alternative algorithm, which has been termed
as the ‘‘1/2 Circumcenter Algorithm’’, does not require either of
the following: (i) the explicit computation of constraint sets so
agents maintain connectivity with others within distance r >
0, and (ii) knowledge of the absolute positions of neighbors.
Second, we propose two possible modifications of the standard
Circumcenter Algorithm and the new 1/2 Circumcenter Algorithm
to deal with noisy measurements. The assumption is that every
measured neighbor’s position belongs to a disk centered at the
neighbor’s true position and radius σ < r . This noise can make
agents lose connectivity when they implement the standard or
the 1/2 Circumcenter Algorithms. The two proposed modifications
of each algorithm guarantee agent connectivity. The first one
restricts further each agent’s motion constraint set to guarantee
connectivity of the network (variant 1). In the second one, agents
filter measurements of neighbors to make sure that they are still
within the connectivity radius r (variant 2).
After this, we look at all variants of the modified circumcenter

algorithms in 1D and analyze themusing a deterministic approach.
Being the proofs analogous, we present a detailed account of
the modified (standard) Circumcenter Algorithm, variant 1. All
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proofs make use of basic mathematical arguments, require initial
agent connectivity under the r-disk graph, and different lower-
bounds on r/σ . For example, themodified (standard) Circumcenter
Algorithm, variants 1 and 2, require that r > 7σ .We also show that
the practical stability ball where all agents converge under any of
the modified algorithms has a diameter upper bounded by 2σ .
As shown in simulations, the same type ofmulti-agent behavior

does not hold for other graphs. To dealwith those cases andmotion
in higher dimensions, we make use of stochastic analysis tools.
By using an argument similar to that of the LaSalle invariance
principle, we can characterize the behavior of the modified 1/2
Circumcenter Algorithm. More precisely, we can prove that the
expectation of the position of every agent tends to the same point
as time goes to infinity. This holds for any r/σ > 1, and under a
periodic strong-connectivity assumption detailed in the paper. In
general, we see that the diameter of the practical stability ball is
upper bounded by r − σ or r .
We also look at executions of the algorithms in simulation. In

all cases, agents reach a practical stability ball with diameter much
smaller than 2σ when using the r-disk graph. Simulations also
show that convergence holds for small ratios r/σ at the expense
of longer convergence times. In general, the convergence gets
worse as connectivity becomes sparser and the number of agents
increases.With respect toMartínez (2007), herewepresent the 1/2
Circumcenter Algorithm and extend the stochastic analysis to 2D.
The paper is organized as follows. Section 2 introduces

preliminary notions, circumcenter algorithms and modifications.
Section 3 includes a deterministic analysis of the modified
circumcenter algorithms when implemented in 1D and over the
r-disk graph. Section 4 includes a stochastic analysis of the
algorithms in 2D. Finally, Section 5 illustrates the performance
of the algorithms in simulations and Section 6 presents some
concluding remarks.

2. Preliminaries

Here, we review some notation for standard geometric objects;
for additional information the reader is referred to Bullo, Cortés,
and Martínez (2009) and de Berg, van Kreveld, Overmars, and
Schwarzkopf (2000). We then recall the circumcenter and parallel
circumcenter algorithms as discussed in Ando et al. (1999), Lin,
Morse, and Anderson (2007b) and Martínez, Bullo, Cortés, and
Frazzoli (2007). The section concludes introducing the new class
of modified circumcenter algorithms.

2.1. Basic geometric notions and notation

In what follows, Rd will refer to either R or R2. For a bounded
set S ⊂ Rd, we let co(S) denote the convex hull of S and diam(S) =
diam(co(S)) = maxq1,q2∈S ‖q1−q2‖ its diameter. For p, q ∈ Rd, we
let (p, q) = {λp + (1 − λ)q | λ ∈ (0, 1)} and [p, q] = co({p, q})
denote the open and closed segment with extreme points p and q,
respectively. For a bounded set S ⊂ Rd, we let CC(S) and CR(S)
denote the circumcenter and circumradius of S, respectively, that
is, the center and radius of the smallest-radius d-sphere enclos-
ing S. Let S = {q1, . . . , qk} ⊆ R2, then it can be proved that
CC(S) ∈ co(S) \ S. The computation of the circumcenter and cir-
cumradius of a bounded set is a strictly convex problem and in
particular a quadratically constrained linear program. In particu-
lar, the circumcenter of a set of points CC(q1, . . . , qk) becomes a
continuous function of q1, . . . , qk. For p ∈ Rd let D(p, r) denote
the closed disk of center p and radius r ∈ R>0.
In the sequel we will use tuples P = (p1, . . . , pn) ∈ Rdn to

refer to the positions of a group of n robots in space. The algo-
rithms we consider are implemented in discrete time over a time

schedule m = 0, 1, 2, 3, . . ., and give rise to point sequences
{Pm = (p1,m, . . . , pn,m) ∈ Rdn}m≥0.
A proximity graph function G(P ) associates to a point set P =

{p1, . . . , pn} ⊂ Rd an undirected graphwith vertex setP and edge
set EG(P ) ⊆ P × P \ diag(P × P ). In other words, the edge
set of a proximity graphmay depend on the location of its vertices.
General properties of proximity graphs, basics on graph theory and
examples can be found in Jaromczyk and Toussaint (1992), de Berg
et al. (2000) and Bullo et al. (2009). In particular, we will make use
of the r-disk proximity graph Gdisk(r), for r ∈ R>0, over a set of
vertices P . In this graph, two agents pi, pj ∈ P are neighbors iff
‖pi − pj‖ ≤ r . We denote the set of neighbors of agent pi in G(P )
by:

Ni(G) = {j ∈ {1, . . . , n} \ {i} | (pi, pj) ∈ EG(P )},

and the cardinality of Ni(G) will be denoted as ni = |Ni(G)|.
A sequence of tuples {Pm}m≥0 (or associated finite point sets
{Pm}m≥0) and a given G induce a sequence of graphs that we
denote as G(m), m ≥ 0, when it is clear from the context that
G(m) ≡ G(Pm). We will also consider proximity graphs subject to
link failures, GF (P ). These are graphs on P with an edge set that
may also be dependent on the location of the vertices. However,
given (pi, pj) in GF (P ), the reversed edge (pj, pi) may not be in
GF (P ). In other words, GF (P ) is a directed graph. We will use
these graphs to capture sensing or communication failures. When
elements in the setP are indexed by i ∈ {1, . . . , n} = V , the graph
GF (P ) can be associated with a graph G over V in a natural way.
With a slight abuse of notation, we will sometimes identify these
two objects.
For q0 and q1 in Rd, and for a convex closed set Q ⊂ Rd with

q0 ∈ Q , let λ(q0, q1,Q ) denote the solution of the strictly convex
problem:

maximize λ
subject to λ ≤ 1, (1− λ)q0 + λq1 ∈ Q . (1)

Note that this convex optimization problem has the following in-
terpretation: move along the segment from q0 to q1 the maximum
possible distance while remaining in the constraint set Q . Under
the stated assumptions the solution exists and is unique. We will
make explicit use of the constraint set in the circumcenter algo-
rithms that follow.

2.2. Circumcenter algorithms

In the following, we present an informal description of one
execution of the Circumcenter Algorithm for a group of agents P .
It is defined for any graphGF (P ) ⊆ Gdisk(r)(P ), with r ∈ R>0. For
a formal description of this algorithm written in pseudocode, the
reader is referred to Bullo et al. (2009).

(Standard) Circumcenter Algorithm (Ando et al., 1999; Lin et al.,
2007a; Cortés et al., 2006) Each agent performs the following
actions: (i) it detects its neighbors according to the connectivity
graph; (ii) it computes the circumcenter of the point set
comprised of its neighbors and of itself; (iii) it moves to
the closest point to the circumcenter while remaining in a
constraint set Qi =

⋂
j∈Ni(G)∪{i}

D
(
pi+pj
2 , r2

)
. The constraint set

guarantees connectivity with the group of previous neighbors
in Gdisk(r)(P ).

This algorithm can be implemented by each agent with knowl-
edge of neighbors’ positions in a local frame. When implemented
over a proximity graph with failures, GF ⊂ Gdisk, convergence
of the algorithm can be guaranteed as long as GF is periodically
strongly connected (Cortés et al., 2006). The asynchronous behav-
ior of the algorithm for was studied in Flocchini et al. (2001) and



Download English Version:

https://daneshyari.com/en/article/697934

Download Persian Version:

https://daneshyari.com/article/697934

Daneshyari.com

https://daneshyari.com/en/article/697934
https://daneshyari.com/article/697934
https://daneshyari.com

