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• Theoretical  study  of bubble  in  liquid
bridge  problem  for  zero  Bond  num-
ber.

• Existence  of two  bridge  rupture
mode:  neck  rupture  and  film  rupture.

• Existence  of  an  optimum  bubble  size
for maximizing  bridge  stability.
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a  b  s  t  r  a  c  t

A  bubble-in-liquid  bridge  is a unique  configuration  that  resembles  the  case  of two  neighboring  bubbles
in  a foam  separated  by  a liquid  layer.  It calls for a small  bubble  inside  a liquid  bridge  with  the  curved  free
surface  of  the  liquid  bridge  acting  as  part  of  a larger  external  bubble.  This  configuration  can  serve as a
prototype  to  study  foam  dynamics.  A  devise  exploring  this  concept  has  been  presented  in a previous  work
(Kostoglou  et  al., 2011).  The  present  work adds  to the theoretical  background  of  the  proposed  devise.  The
particular  case  of  zero  Bond  number  is studied  theoretically  here.  Even  in  its simplest  form  the  particular
system  exhibits  an  interesting  behavior.  It  is shown  that  there  are  two rupture  modes  of  the  liquid  bridge
as  the  liquid  volume  decreases  i.e.  neck  rupture  and  film  rupture.  The  prevailing  one  depends  on system
parameters.  The  evolution  of the  bubble  size  as the  liquid  volume  decreases  up  to  rupture,  is  extensively
studied.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Liquid bridges formed between solid surfaces have been the
study of extensive research through the last 100 years. The main
reason is that apart of the fundamental importance of the sub-
ject, there are a variety of applications involving liquid bridges. For
example, liquid bridges between particles are important in partic-
ulate processes such as granulation, flotation, coating [1,2]. They
are also important for moist soil properties [3]. Another family of
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applications regards the production of high quality crystals [4],
alignment of components using optoelectronics assemblies, and
the control of forces in microgripping processes [5]. Study of the
above processes requires the knowledge of the bridge shape which
is dictated by the well-known Young–Laplace equation. In general,
this equation does not have analytical solution so a large amount of
literature is devoted to derivation of approximate solutions of this
equation that offer physical insight and facilitate interpretation of
experimental data [6–11].

Several designs based on quasi-static or dynamic liquid bridges
have been proposed as tools for studying static or dynamic surface
properties [12,13]. Traditionally, liquid bridges have been studied
either by measuring the force exerted by the liquid bridge to its
supporting boundaries or using image processing techniques to
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Fig. 1. Schematic of the liquid bridge-bubble system.

identify the liquid bridge profile. In both cases, a usual goal was to
estimate surface tension or contact angle from liquid bridge charac-
teristics. However, both techniques require excessive skill and are
cumbersome. The apparent electrical conductance of conducting
liquid bridges has been suggested as an alternative characteris-
tic parameter from which liquid bridge features can be directly
deduced [12,14]. Recently, a configuration consisting of a bubble-
in-liquid bridge has been proposed to examine the surfactant
induced stabilization of the liquid layer between the internal bub-
ble and the external free surface of the bridge as the liquid was
draining out of the bridge [14]. An advantage of this configuration
is that the stability of the liquid layer can be followed continu-
ously starting from an appreciable thickness of the layer down to
a very thin film up to the rupture point. Ultra-sensitive electrical
conductance measurements were employed to follow the drainage
of a liquid bridge pinned at the rims of flat rod electrodes. Electri-
cal signals can easily sense liquid films of the order of microns or
less without the complications of optical distortion and focusing
of traditional imaging techniques. The analysis performed in [14]
was based on the assumption of a constant bubble size during liq-
uid drainage. This assumption is relaxed in the present work by
considering an evolving bubble size during drainage.

The scope of the present study is the fundamental analysis of
the configurations of the bubble-in-liquid bridge system during
liquid volume reduction (drainage of the bridge) in the absence
of surfactant and for zero Bond number. In the next section the
mathematical problem is formulated and the behavior of its solu-
tion with emphasis to the evolution of the bubble size is discussed
in the results section.

2. Problem formulation

The geometry of the problem is shown in Fig. 1. A liquid bridge
is edge-pinned between the tips of two equal diameter solid rods
which are aligned vertically. Both rods have tiny holes at their cen-
ter. These holes have diameters an order of magnitude smaller than
the diameter of the rods. The hole at the top rod is meant to create
an internal bubble to the bridge by blowing air through it whereas
the hole at the bottom rod is meant for draining the bridge liq-
uid. The internal bubble is connected to an air chamber. From the
practical point of view the air chamber is necessary for creating the
bubble and measuring is internal pressure. The pressure and vol-
ume  in the chamber is adjusted to achieve a bubble of the desired
size. The issue of interest here is to study the evolution of the liquid
bridge shape, the bubble size and the pressure in the liquid during

liquid withdrawal. The study will be performed for conditions that
correspond to the following assumptions.

(i) The liquid is a pure liquid with surface tension � . There are
no surfactants in the system for surface tension manipulation.
Surfactant through their adsorption/desorption on interfaces
and diffusion adds significant complexity to the problem and
cannot be taken into account by simply altering the equilibrium
surface tension [15].

(ii) The whole process occurs under constant temperature condi-
tions and 100% relative humidity to prevent evaporation.

(iii) The effect of gravity can be ignored (negligibly small value
of the Bond number). This condition is met in three situa-
tions (based on different ways to decrease Bo): microgravity
environment, small dimensions of the liquid bridge, replacing
the external air by another immiscible liquid whose density
matches the density of the bridge liquid.

(iv) Rod material fully wetted by the bridge liquid. This assump-
tion combined with (i) and (iii) ensures that the shape of the
internal bubble is always spherical.

(v) The gas is insoluble in the liquid. This assumption is needed
to exclude the Ostwald ripening phenomenon i.e. the bubble
dissolution due to its higher pressure than the environment
pressure.

(vi) The liquid withdrawal flowrate is relatively small to ensure
that the viscous stresses are negligibly small compared to the
surface tension forces and the bridge shape can be determined
by pseudo-steady energy balance (i.e. Young–Laplace equa-
tion). This assumption implies that the liquid flow rate does
not alter the evolution path of the system but simply influences
the time variable. The state of the system is fully determined by
its liquid content which can be used as the time-like evolution
variable.

Considering a cylindrical coordinate system x, r with its center
at the center of the bottom rod and denoting as R the rod radius,
D the liquid bridge length (height), VLo the initial liquid volume,
VL the instantaneous liquid volume, bo the initial internal bubble
radius, b the instantaneous internal bubble radius, Vc the volume of
the air chamber connected with the bubble, Po the environmental
pressure and r = Y(x) the shape of the liquid bridge, the problem is
described from the following set of equations:

Young–Laplace equation for the liquid bridge shape(
1 +

(
dY

dx

)2
)−3/2 [

−d2Y

dx2
+ 1

Y

(
1 +

(
dY
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)2
)]

= �P

�
(1)

where �P = PL − Po is the pressure difference between the liquid
bridge and the environment due to the curvature of the liquid
bridge. The boundary conditions for the above second order bound-
ary value problem are

Y(0) = R, (2a)

Y(D) = R (2b)

The additional unknown parameter �P  is found from the
requirement of liquid volume conservation:

VL = �

∫ D

0

[Y2(x) − U(b2 − (x − D + b)2)] dx (3)

where the function U is defined as U(x) = 0 for x < 0 and U(x) = x for
x ≥ 0.

The above mathematical problem can be solved for the instan-
taneous liquid bridge shape for a given bubble diameter b. An
evolution equation for the bubble radius is needed and it is based on
the requirement that the mass of gas in the domain defined by the
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