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a b s t r a c t

This paper presents a new approach for single sensor tracking using passive bearings onlymeasurements.
Gaussianmixture measurement presentation, together with a track splitting algorithm, allow space-time
integration of the target position uncertainty with a simple algorithm. The bearings-only measurements
are incorporated into track as they arrive using a dynamic bank of linear Kalman filters. While this
approach is applicable to the case with the target detection, data association and multitarget issues,
this paper concentrates on the target trajectory estimation using associated measurements. A simulation
study demonstrates the benefits of this approach.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Formany decades bearings only sensors have been used for tar-
get (emitter) localization. If multiple sensors are used, the emitter
is located bymultiple beam crossing (triangulation) (Bar-Shalom&
Li, 1993; Mušicki, 2008b). Movement from a single sensor can also
provides effective triangulation. The necessary observability con-
dition is that (at least in some interval) the sensor motion model
must be at least one derivative higher than the target motion, and
a component of this motion must be perpendicular to the line of
sight (Blackman & Popoli, 1999; Nardone, Lindgren, & Gong, 1984).
If the target motion is a constant velocity, at some stage the sensor
has to accelerate.
Single sensor single target bearings only tracking is a non-linear

problem. Extended Kalman filter (EKF) (Bar-Shalom, Li, & Kirubara-
jan, 2001) linearizes nonlinearities around the predicted target
position. Unscented Kalman filters (UKF) (Julier & Uhlmann, 2004;
Julier, Uhlmann, & Durrant-Whyte, 2000) sample and propagate
the probability density function at sigma points. Particle Filters
(PF) (Ristic, Arulampalam, & Gordon, 2004) sample non-linear pdf
by a set of randomparticles. EKF (Aidala, 1979), a bank of EKFs (Kro-
nhamn, 1998; Peach, 1995), UKF (Ristic et al., 2004) and Particle
Filters (Ristic et al., 2004) have all been applied to this problem.
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The Shifted Rayleigh filter (Arulampalam, Clark, & Vinter, 2007) is a
moment matching algorithm developed specifically for this appli-
cation; it generates the exact conditional distribution of the target
motion, given normal approximation to the prior.
TheGaussianMixtureMeasurements-Integrated Track Splitting

(GMM-ITS) filter is an approach to estimation using nonlinearmea-
surements (Mušicki & Evans, 2006). Both non-Gaussian measure-
ment likelihood and non-Gaussian track state are approximated by
Gaussian mixtures. This presentation is similar to the track split-
ting approach (Mušicki, La Scala, & Evans, 2007), and is a dynamic
bank of linear Kalman filters. In this paperwe evaluate the state es-
timation capabilities of GMM-ITS when used in single sensor bear-
ings only tracking of a single target. This framework can easily be
extended to data association issues when the measurement set
contains clutter measurements, and targets exist and are detected
randomly. It is used in Mušicki (2008a,b) to solve a different prob-
lem of asynchronous triangulation.
This approach has some similarities to Kronhamn (1998),where

the track state is a static bank of Extended Kalman filters, initial-
ized by Gaussianmixture approximation of themeasurement like-
lihood. The approximation of measurement likelihood presented
in Section 3.1 is very similar to solution (Kronhamn, 1998).
To summarize, the contributions of this paper are:

• Present a solution of single sensor bearings only tracking, using
recently published GMM-ITS.
• GMM-ITS is a general non-linear estimator. It allows a trade-
off between computational requirements and system perfor-
mance, in this case estimation errors.
• The solution is compared with a number of other proposed so-
lutions, and with the Cramer–Rao lower bound.
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The single sensor passive bearings only problem is presented in
Section 2. Section 3 presents GMM-ITS solution. A simulation study
presented in Section 4 shows the effectiveness of this method,
followed by concluding remarks.

2. The single sensor bearings only tracking problem

A two-dimensional measurement case is considered. A single
moving sensor measures direction of target emissions at known
random times indexed by k. At some point the target trajectory
becomes observable (Blackman & Popoli, 1999; Nardone et al.,
1984). The target trajectory is modeled by
tk = Fk−1tk−1 + νk−1 (1)
where tk denotes the target trajectory state at time k, Fk−1 is the
state propagation matrix, process noise νk−1 is a zero mean, white
Gaussian sequence with covariance Qk−1. Fk−1 and Qk−1 depend on
the timebetween k and k−1 (Bar-Shalom&Li, 1993). Denote by zk,s
sensor position at time k. Define target polar coordinates (rk, θk) by

Htk − zk,s = rk

[
cos(θk)
sin(θk)

]
(2)

where Htk is the (linear) projection of target state into surveillance
(position) space. The target range uncertainty is defined by a
known minimum and maximum distance to sensor, rk,min ≤
rk ≤ rk,max. Thus θk = θk(Htk; zk,s) is a function of unknown
target position Htk with sensor position zk,s being the parameter.
Measurement θk,m is

θk,m = θk + ωk, (3)
where ωk is zero mean, white Gaussian measurement noise with
covariance σ 2k,θ , uncorrelated with the process noise sequence.
Probability density function p(θk,m|θk) is

p(θk,m|θk) = N (θk,m; θk, σ
2
k,θ ), (4)

where N (x;m,Σ) denotes the Gaussian pdf of variable x with
mean m and covariance Σ . We also use θ km to denote the set of all
measurements up to time k

θ km = {θ1,m, θ2,m, . . . , θk,m}. (5)

3. GMM-ITS bearings only target tracking

A posteriori state estimate probability density function (pdf) is
calculated by the Bayes formula, which here becomes

p(tk|θ km) =
p(θk,m|tk)p(tk|θ k−1m )

p(θk,m|θ k−1m )
. (6)

Measurement θk,m is known; measurement likelihood p(θk,m|tk) is
a function of target positionHtk, p(θk,m|Htk) = fm(Htk; θk,m). Eq. (6)
can be expressed as

p(tk|θ km) =
fm(Htk; θk,m)p(tk|θ k−1m )∫

tk
fm(Htk; θk,m)p(tk|θ k−1m ) dtk

. (7)

Function fm(tk; θk,m) is non-negative for all tk, and can integrate to
any positive number. Thus it is a density of tk, andmultiplying it by
a constant does not change result (7). Here we choose to normalize
it so that∫
tk
fm(Htk; θk,m) d(Htk) = 1 (8)

and fm(Htk; θk,m) is interpreted as target position Htk pdf, given
θk,m, and in the absence of any other information.
As θk(Htk; zk,s) is a non-linear function of Htk (2), neither fm

(Htk; θk,m), nor p(tk|θ km) nor (for k > 1) p(tk|θ k−1m ) are Gaussian.
GMM-ITS approximates both fm(Htk; θk,m) and p(tk|θ k−1m ) by
Gaussian mixtures.

3.1. Measurement likelihood Gaussian mixture

The normalized measurement likelihood equals

fm(Htk; θk,m) =


p(θk,m|θk)

π(r2k,max − r
2
k,min)

; rk ∈ [rk,min, rk,max]

0; otherwise.
(9)

The aim is to approximate fm(Htk; θk,m) by a Gaussian mixture in
the surveillance (target position) space,

fm(Htk; θk,m) ≈
Gk∑
g=1

γk,gN (Htk; ẑk,g , Rk,g), (10)

where each element of the Gaussian mixture (10) is termed a
‘‘measurement component’’. Each measurement component g =
1, . . . ,Gk is defined by its mean ẑk,g , covariance Rk,g and relative
probability γk,g ≥ 0, with

Gk∑
g=1

γk,g = 1. (11)

As in Kronhamn (1998), Mušicki (2008a,b), divide range interval
[rk,min, rk,max] in Gk subintervals in a geometric progression

rk,g+1
rk,g
= ρk; g = 1 · · ·Gk, (12)

where rk,1 = rk,min and rk,Gk+1 = rk,max, and

ρk =

(
rk,max
rk,min

)1/Gk
(13)

Define ∆rk,g = rk,g+1 − rk,g and r̄k,g = 0.5(rk,g+1 + rk,g) as the
length and mean range of range subinterval g .
Range subinterval g corresponds to segment g in the surveil-

lance space, defined in polar coordinates centered on the sensor
position zk,s by rk,g , rk,g+1, θk,m − σk,θ , θk,m + σk,θ . Segment g is
approximated by an ellipse whose mean value and covariance are
used as mean and covariance of measurement component g re-
spectively, ẑk,g and Rk,g :

ẑk,g = zk,s + r̄k,g

[
cos(θk,m)
sin(θk,m)

]
(14)

Rk,g = Tk,m

[
(∆rk,g/2)2 0

0 (r̄k,gσk,θ )2

]
T Tk,m, (15)

with rotation matrix Tk,m defined by

Tk,m =
[
cos(θk,m) − sin(θk,m)
sin(θk,m) cos(θk,m)

]
. (16)

Departing from Kronhamn (1998), the probability γk,g that seg-
ment g contains the target is proportional to the area covered by
the measurement component g , as in Mušicki (2008a,b) 1

γk,g =

√
det(Rk,g)

Gk∑
h=1

√
det(Rk,g)

= ρ
2g−2
k

ρ2k − 1

ρ
2Gk
k − 1

. (17)

The true measurement component at time k is the measurement g
defined by rk ∈ [rk,g , rk,g+1].
One Gaussian mixture measurement model of 6 components

is presented in Fig. 1, where each measurement component is

1 Second equation provided by anonymous reviewer.
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