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Abstract

This paper presents a performance analysis of nonlinear periodically time-varying discrete controllers acting upon a linear time-invariant
discrete plant. Time-invariant controllers are distinguished from strictly periodically time-varying controllers. For a given nonlinear periodic
controller, a time-invariant controller is constructed. Necessary and sufficient conditions are given under which the time-invariant controller
gives strictly better control performance than the time-invariant controller from which it was obtained, for the attenuation of lp exogenous
disturbances and the robust stabilization of lp unstructured perturbations, for all p ∈ [1, ∞].
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The advantages and limitations of time-varying linear and
nonlinear feedback control have been actively researched for
the past two decades. Linear time-varying (LTV) controllers
have been shown to have advantages over linear time-invariant
(LTI) controllers in a number of important control problems
such as the improvement of phase and gain margins and asymp-
totic stabilization (c.f. Allwright, Astolfi, & Wong, 2005; Das
& Rajagopalan, 1992; Khargonekar, Poolla, & Tannenbaum,
1985; Moreau & Aeyels, 2004).

In this paper we consider the use of nonlinear periodic dis-
crete control for the problems of disturbance attenuation and
robust stabilization of a LTI discrete plant. The problem of dis-
turbance attenuation consists of finding a controller which sta-
bilizes the plant and minimizes the effect of the disturbance
input on the disturbance output. The problem of robust stabi-
lization of an LTI plant involves considering a family of plants,
and obtaining a controller which stabilizes the closed loop
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system for all plants in the family. Numerous authors have
shown that linear and nonlinear time-varying (NLTV) con-
trollers offer no advantages over LTI controllers for these prob-
lems (e.g. Chapellat & Dahleh, 1992; Poolla & Ting, 1987;
Schmid & Zhang, 2001; Shamma & Dahleh, 1991; Zhang
& Zhang, 2000).

In this paper, we begin by considering a nonlinear strictly
periodically time-varying discrete system (periodic with period
N �2) G and obtain a time-invariant discrete system GTI by
averaging it. Necessary and sufficient conditions are presented
underwhichGTI hasstrictlysmaller inducedsystemnormthanG.
This result is used to compare the performance of strictly peri-
odically time-varying controllers and time invariant controllers
for the problems of disturbance attenuation and robust stabi-
lization. The analysis distinguishes time-invariant and strictly
periodically time-varying controllers. For a given strictly
periodically time-varying controller of arbitrary period N �2,
a time-invariant controller will be constructed and compared
with the given strictly periodically time-varying controller.

Firstly, we give conditions under which the constructed
time-invariant controller gives strictly better disturbance atten-
uation performance than the given strictly periodically time-
varying controller. This extends the analysis of discrete linear
controllers in Schmid and Zhang (2001) to nonlinear discrete
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controllers. For sampled-data systems, similar results on non-
linear controllers were given in Schmid and Zhang (2003).
Secondly, we give conditions under which the constructed
time-invariant controller yields strictly greater additive and
multiplicative robust stability margins than the given strictly
periodically time-varying controller.

The results imply that the use of strictly periodically time-
varying controllers for achieving certain performance specifi-
cations may come at a price; a strictly periodic controller can
give inferior performance for the attenuation of exogenous dis-
turbances and the robust stabilization of unstructured perturba-
tions, relative to that achievable by a time-invariant controller.

This paper is organized as follows. Section 2 lists some stan-
dard definitions and results. Section 3 considers a strictly peri-
odically time-varying system and compares its induced system
norm with that of the time-invariant system obtained by aver-
aging it. In Section 4 we give a performance analysis of strictly
periodically time-varying controllers for the classical problems
of disturbance attenuation and robust stabilization. In Section 5
we give the proof of the main result from Section 3. Section 6
applies the results to an example, and Section 7 contains some
concluding remarks.

2. Mathematical preliminaries

For any p ∈ [1, ∞] and positive integer n, lnp denotes the
discrete signal space of signals u : Z+ → Rn, equipped with
the usual norm ‖ · ‖p. We consider systems G : lnp → lmp . G is
assumed to be nonlinear, in the sense of not necessarily linear.

For any � ∈ Z and any p ∈ [1, ∞], let q−� : lnp → lnp be the
back shift operator defined by

(q−�u)(t) = u(t − �), (1)

where zeroes padding is assumed. For any u ∈ lnp, and for any
� ∈ Z, ‖q−�u‖p = ‖u‖p. Let P� : lnp → lnp be the truncation
operator defined by

(P�u)(t) =
{

u(t) if t ��,
0 elsewhere.

(2)

G is causal if, for all � ∈ Z and all u ∈ lnp, P�Gu = P�GP �u.
G is strictly causal if, for all � ∈ Z and all u ∈ lnp, P�Gu =
P�GP �−1u. G has pointwise finite memory (Shamma & Zhao,
1993) if there exists a function FM(·, ·; G) : lnp × Z+ → Z+
such that for all u ∈ lnp and t ∈ Z+,

(1) FM(u, t; G)� t ,
(2) FM(u, t; G) = FM(Ptu, t; G),
(3) (I − PFM(u,t;G))Gu = (I − PFM(u,t;G))G(I − Pt)u.

G has pointwise fading memory if it can be approximated arbi-
trarily closely in norm by pointwise finite memory systems. G
is time invariant if G= qGq−1. G is periodically time-varying
with period N �1 if G=qNGq−N , G �= q�Gq−�, ∀1���N−
1. G is strictly periodically time-varying if N �2. Thus strictly
periodically time-varying systems are distinguished from time
invariant systems. For brevity strictly periodically time-varying

systems will be referred to as strictly periodic systems. The
lp-induced norm of G is

‖G‖p = sup

{‖Gu‖p

‖u‖p

: u ∈ lnp, u �= 0

}
. (3)

G is lp finite gain stable if ‖G‖p < ∞. For stable G, there
exists a sequence of non-zero signals {uk}k∈Z+ ⊆ lnp such that
‖G‖p = limk→∞ ‖Guk‖p/‖uk‖p; we say G attains its norm on
the sequence. The incremental norm of G is

‖G‖inc
p = sup

{‖Gu − Gv‖p

‖u − v‖p

: u, v ∈ lnp, u − v �= 0

}
. (4)

G is incrementally lp finite gain stable if ‖G‖inc
p < ∞. For linear

G, the norm and incremental norm agree. If G has period N �2,
then for each 0���N − 1, the system G� : lnp → lmp with
G� = q�Gq−� also has period N. The system GTI : lnp → lmp
with

GTI = 1

N

N−1∑
�=0

G� (5)

is a time-invariant system, because

q1GTIq
−1 = 1

N

N−1∑
�=0

q1G�q
−1 = 1

N

N∑
�=1

G� = GTI.

If G is (incrementally) lp finite gain stable then so is G�,
for each 1���N − 1, and also GTI. We denote cn

0 = {u ∈
ln∞ : limt→∞ |u(t)|∞ = 0} ⊆ ln∞, and use bn

p(r) to denote the
closed ball in lnp of radius r. For p ∈ [1, ∞], we say that
S = {y1, y2, . . . , yN } ⊆ lnp is an lp strictly convex set if and
only if

∥∥∥∥∥
1

N

N∑
i=1

yi

∥∥∥∥∥
p

< max{‖yi‖p : 1� i�N}. (6)

For p ∈ (1, ∞), the spaces lnp are strictly convex, and this
implies that a set S is an lp strictly convex set if and only if
it contains at least two elements. For p = 1 and ∞, we obtain
conditions under which S is lp strictly convex in Section 5. For
p ∈ (1, ∞), the spaces lnp are also uniformly convex and satisfy
the following property: for some integer N �2 and for some
r > 0, let S={y1, y2, . . . , yN } ⊆ bn

p(r) be such that there exist
yj , yk ∈ S and � > 0 satisfying ‖yj − yk‖p > �. Then there
exists an �(�, r) > 0 such that

max{‖yi‖p : 1� i�N} −
∥∥∥∥∥

1

N

N∑
i=1

yi

∥∥∥∥∥
p

> �(�, r). (7)

3. Analysis of discrete periodic system norms

In this section we consider a finite gain stable strictly periodic
system G with period N �2. The time-invariant system GTI
derived by averaging G as in (5) is such that ‖GTI‖p �‖G‖p
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