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Abstract

This paper presents a performance analysis of nonlinear periodically time-varying discrete controllers acting upon a linear time-invariant
discrete plant. Time-invariant controllers are distinguished from strictly periodically time-varying controllers. For a given nonlinear periodic
controller, a time-invariant controller is constructed. Necessary and sufficient conditions are given under which the time-invariant controller
gives strictly better control performance than the time-invariant controller from which it was obtained, for the attenuation of /, exogenous
disturbances and the robust stabilization of [, unstructured perturbations, for all p € [1, oo].
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1. Introduction

The advantages and limitations of time-varying linear and
nonlinear feedback control have been actively researched for
the past two decades. Linear time-varying (LTV) controllers
have been shown to have advantages over linear time-invariant
(LTT) controllers in a number of important control problems
such as the improvement of phase and gain margins and asymp-
totic stabilization (c.f. Allwright, Astolfi, & Wong, 2005; Das
& Rajagopalan, 1992; Khargonekar, Poolla, & Tannenbaum,
1985; Moreau & Aeyels, 2004).

In this paper we consider the use of nonlinear periodic dis-
crete control for the problems of disturbance attenuation and
robust stabilization of a LTI discrete plant. The problem of dis-
turbance attenuation consists of finding a controller which sta-
bilizes the plant and minimizes the effect of the disturbance
input on the disturbance output. The problem of robust stabi-
lization of an LTI plant involves considering a family of plants,
and obtaining a controller which stabilizes the closed loop
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system for all plants in the family. Numerous authors have
shown that linear and nonlinear time-varying (NLTV) con-
trollers offer no advantages over LTI controllers for these prob-
lems (e.g. Chapellat & Dahleh, 1992; Poolla & Ting, 1987;
Schmid & Zhang, 2001; Shamma & Dahleh, 1991; Zhang
& Zhang, 2000).

In this paper, we begin by considering a nonlinear strictly
periodically time-varying discrete system (periodic with period
N >2) G and obtain a time-invariant discrete system Gty by
averaging it. Necessary and sufficient conditions are presented
under which Gy hasstrictly smallerinduced systemnormthan G.
This result is used to compare the performance of strictly peri-
odically time-varying controllers and time invariant controllers
for the problems of disturbance attenuation and robust stabi-
lization. The analysis distinguishes time-invariant and strictly
periodically time-varying controllers. For a given strictly
periodically time-varying controller of arbitrary period N >2,
a time-invariant controller will be constructed and compared
with the given strictly periodically time-varying controller.

Firstly, we give conditions under which the constructed
time-invariant controller gives strictly better disturbance atten-
uation performance than the given strictly periodically time-
varying controller. This extends the analysis of discrete linear
controllers in Schmid and Zhang (2001) to nonlinear discrete
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controllers. For sampled-data systems, similar results on non-
linear controllers were given in Schmid and Zhang (2003).
Secondly, we give conditions under which the constructed
time-invariant controller yields strictly greater additive and
multiplicative robust stability margins than the given strictly
periodically time-varying controller.

The results imply that the use of strictly periodically time-
varying controllers for achieving certain performance specifi-
cations may come at a price; a strictly periodic controller can
give inferior performance for the attenuation of exogenous dis-
turbances and the robust stabilization of unstructured perturba-
tions, relative to that achievable by a time-invariant controller.

This paper is organized as follows. Section 2 lists some stan-
dard definitions and results. Section 3 considers a strictly peri-
odically time-varying system and compares its induced system
norm with that of the time-invariant system obtained by aver-
aging it. In Section 4 we give a performance analysis of strictly
periodically time-varying controllers for the classical problems
of disturbance attenuation and robust stabilization. In Section 5
we give the proof of the main result from Section 3. Section 6
applies the results to an example, and Section 7 contains some
concluding remarks.

2. Mathematical preliminaries

For any p € [1, oc] and positive integer n, [}, denotes the
discrete signal space of signals u : Z+ — R”", equipped with
the usual norm | - || ,. We consider systems G : l; — IZ’. Gis
assumed to be nonlinear, in the sense of not necessarily linear.

For any t € Z and any p € [1,00],letg™ " : I, — 1, be the
back shift operator defined by

(g () =u(t — 1), ey

where zeroes padding is assumed. For any u € l;l,, and for any
teZ, llg ullp, = llullp. Let Py : l;, — [}, be the truncation
operator defined by

u(t) ift<zs,

(Pru)(1) = {0 elsewhere. (2)

G is causal if, for all T € Z and all u € l;’, P.Gu = P,GPu.
G is strictly causal if, for all T € Z and all u € l;, P.Gu =
PG P;_1u. G has pointwise finite memory (Shamma & Zhao,
1993) if there exists a function FM(-, -; G) : l;’, x It —> 7+
such that for all u € I} and 1 € AR

(1) FM(u,t; G)>t,
(2) FM(u,t; G) = FM(Pyu, t; G),
B) (I = PEmu,i:6))Gu = — Pryu,i:6))GU — Pru.

G has pointwise fading memory if it can be approximated arbi-
trarily closely in norm by pointwise finite memory systems. G
is time invariant if G =qGq~"'. G is periodically time-varying
with period N> 1if G=¢VNGq™",G # ¢°Gq~ ", V1 <1< N—
1. G is strictly periodically time-varying if N >2. Thus strictly
periodically time-varying systems are distinguished from time
invariant systems. For brevity strictly periodically time-varying

systems will be referred to as strictly periodic systems. The
[p-induced norm of G is

IGull
||G||p=sup{—p:u
lluell

el;’,,u;éo}. )

G is I, finite gain stable if |G|, <oo. For stable G, there
exists a sequence of non-zero signals {uy};cz+ S [}, such that
IGllp =limg— oo |Gugll p/lukll p; we say G attains its norm on
the sequence. The incremental norm of G is

Gu — Gvl,

|G| = sup {
P llu —vll,

: u,velg, u—v;ﬁO}. @)

G is incrementally 1, finite gain stable if |G ||i[§1C < 00. For linear
G, the norm and incremental norm agree. If G has period N >2,
then for each 0<t<N — 1, the system G : [}, — [}} with
G:=q'Gq™" also has period N. The system Gy : I}, — I}
with

=
G = m ; Gq )
is a time-invariant system, because
'G ol G =~ 3 G:.=G
q G119 _Ngq 9 _N; = UTI.

If G is (incrementally) /,, finite gain stable then so is G,
for each 1<t<N — 1, and also G11. We denote c(’)’ ={u €
120 0 limy o0 [u(t) | = 0} € 1%, and use b;(r) to denote the
closed ball in l; of radius r. For p € [1, 00], we say that

S={yi,y2,....,yn} < l?, is an I, strictly convex set if and
only if
1 N
5 2 Y| <max{llyill,  1<i <N}, 6)
i=1 P

For p € (1, 00), the spaces ZZ are strictly convex, and this
implies that a set S is an [, strictly convex set if and only if
it contains at least two elements. For p = 1 and oo, we obtain
conditions under which S is /), strictly convex in Section 5. For
p € (1, 00), the spaces l;’, are also uniformly convex and satisfy
the following property: for some integer N >2 and for some
r>0,letS={y1, y2,..., yn} C b’;,(r) be such that there exist
vj, Yk € S and 0> 0 satisfying ||y; — ykllp > 0. Then there
exists an ¢(d, r) > 0 such that

> &(0, r). @)
p

N
. 1
max({[|y;|l, : 1<i <N} — HN Zyl'
i=1

3. Analysis of discrete periodic system norms

In this section we consider a finite gain stable strictly periodic
system G with period N >2. The time-invariant system Grp
derived by averaging G as in (5) is such that |G|, <|IGll,
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