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a b s t r a c t

Recently, pathfollowing algorithms for parametric optimization problems with piecewise linear solution
paths have been developedwithin the field of regularized regression. This paper presents a generalization
of these algorithms to a wider class of problems. It is shown that the approach can be applied to the
nonparametric system identificationmethod, DirectWeightOptimization (DWO), andbeused to enhance
the computational efficiency of this method. The most important design parameter in the DWOmethod
is a parameter (λ) controlling the bias-variance trade-off, and the use of parametric optimization with
piecewise linear solution paths means that the DWO estimates can be efficiently computed for all values
of λ simultaneously. This allows for designing computationally attractive adaptive bandwidth selection
algorithms. One such algorithm for DWO is proposed and demonstrated in two examples.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In many applications, one encounters optimization problems
involving a trade-off between two terms to optimize, i.e., problems
of the type

min
x
L(x)+ λJ(x) (1)

where λ is a design parameter controlling the trade-off. The
problem (1) is a parametric optimization problem (Guddat, Guerra
Vasquez, & Jongen, 1990), or can also be viewed as a special case of
multiobjective optimization (Boyd & Vandenberghe, 2004).
Examples include, e.g., many bias-variance trade-off types of

problems, and can also be found in the field of regularized
regression. In the paper by Efron, Hastie, Johnstone, and Tibshirani
(2004), the authors present a new estimation method, least angle
regression (LARS), and show that the solutions to both LARS
and LASSO (Tibshirani, 1996) can be efficiently computed for all
values of λ simultaneously. As pointed out in Rosset and Zhu
(2004, 2007), the key to these algorithms is that the solution
paths (i.e., the optimal solutions x to the parametric optimization
problem as a function of λ) are piecewise linear as λ varies
from 0 to ∞. Similar results have recently also been shown
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for the related nn-garrote method and grouped versions of all
these methods (Yuan & Lin, 2006). In all these cases, having a
single-parametric optimization problem allows for developing
pathfollowing algorithms that exploit the piecewise linearity to
efficiently find and represent the solution path.
This paper presents a generalization of the framework of

pathfollowing algorithms for piecewise linear solution paths in
Efron et al. (2004), Rosset and Zhu (2007) and Yuan and Lin
(2006), and extends the problem class to a broad class of (single-)
parametric piecewise quadratic programs and related problems.
It is shown that the solution paths are piecewise linear, and
a pathfollowing algorithm is given. For the case of quadratic
plus piecewise affine cost functions, an algorithm with explicit
expressions for computation of the solution path is given.
Related work can also be found in the area of model predictive

control, where in recent years results in explicit model predictive
control has led to a growing interest in multiparametric linear and
quadratic programming. It has been shown that the solutions to
different classes of problems are piecewise affine functions of the
parameters (see, e.g., Bemporad, Morari, Dua, and Pistikopoulos
(2002), Borrelli (2003), Pistikopoulos, Georgiadis, and Dua (2007)
and Tøndel, Johansen, and Bemporad (2003)). However, it seems
that piecewise quadratic problems has only very recently begun to
receive attention (Mayne, Raković, & Kerrigan, 2007).
A particular example of parametric problems in the form (1)

occurs in Direct Weight Optimization (Roll, 2003; Roll, Nazin, &
Ljung, 2005a,b), which is a nonparametric identification/function
estimation method. DWO computes pointwise function estimates,
given data {y(t), ϕ(t)}Nt=1 from

y(t) = f0(ϕ(t))+ e(t) (2)

0005-1098/$ – see front matter© 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2008.03.020

http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:jacob.roll@autoliv.com
http://dx.doi.org/10.1016/j.automatica.2008.03.020


2746 J. Roll / Automatica 44 (2008) 2745–2753

where f0 is the unknown function to be estimated, f0 : Rn →
R, and e(t) are white noise terms. The idea of making pointwise
function estimates has also appeared under names such as Model
on Demand, lazy learning and least commitment learning (see, e.g.,
Atkeson, Moore, and Schaal (1997a,b), Bontempi, Birattari, and
Bersini (1999), Stenman (1999) and references therein).
In order to estimate f0(ϕ∗) for a given point ϕ∗, the idea of DWO

is to use a linear estimator f̂N(ϕ∗)

f̂N(ϕ∗) =
N∑
t=1

wty(t) (3)

and to select the weights w = (w1, . . . , wN) of the estimator by
convex optimization. Assuming that f0 belongs to some function
class F , the weights can be determined by minimizing a convex
upper bound on the maximummean-squared error (MSE)1

mMSE(ϕ∗, w) = sup
f∈F
E
[(
f (ϕ∗)− f̂N(ϕ∗)

)2
| {ϕ(t)}Nt=1

]
. (4)

The resulting minimization problem is convex and can be written
in the following abstract form:

min
w∈D

λU2(w)+ V (w) (5)

whereU2 is basically an upper boundon the squared bias, andV the
variance term. The design parameter λ determines the trade-off
between the flexibility of the function class and the noise variance
(see Section 3 for more details).
The computed estimatewill of course depend on the choice of λ

controlling the bias-variance trade-off. Amethod for selectingλ for
the case when the noise variance is known was given in Juditsky,
Nazin, Roll, and Ljung (2004). It could also be chosenbyusing cross-
validation or some other criterion (Härdle, 1990; Stenman, 1999).
For all these methods, one needs to compute the DWO estimates
for several different parameter values, which makes it desirable to
be able to efficiently compute the entire solution path.
We will show that the developed pathfollowing algorithm

can be applied to the DWO approach. This means that we can
simultaneously compute the DWO values from (5) for all choices
of λ, which wouldmean a great gain in computational efficiency. A
cross-validation-based algorithm for selection of λ in DWO is also
proposed.
The paper is organized as follows: Section 2 considers some

specific problem classes for which the solution paths are piecewise
linear, while Section 3 proposes how this property can be exploited
in the DWO approach.

2. Piecewise linear solution paths

In this section, we will consider some specific classes of
optimization problems of the type (1), whichwill be shown to have
piecewise linear solution paths.

2.1. Piecewise quadratic plus piecewise affine cost function

First, we will consider a class of optimization problems in the
form (1) where J(x) is piecewise affine and L(x) is a piecewise
quadratic function. A general piecewise affine convex function can

1 Note that (4) is always convex in w, regardless of how the function class F is
chosen, so in principle we could minimize the maximum MSE directly. However,
for many function classes, (4) is difficult to compute, and we have to find an upper
bound instead.

be written (Boyd & Vandenberghe, 2004)

J(x) = max
k
{cTk x+ dk} (6)

L(x) is supposed to be strictly convex and in the form

L(x) =
1
2
xTQix+ f Ti x+ ri if x ∈ Xi (7)

where Qi = Q Ti are positive definite, and the polyhedral regions
Xi = {x | H̃ix 4 q̃i}, i ∈ I (here 4 denotes componentwise
inequalities), form a partition of the x space (for simplicity, we let
the regions be closed sets, which means that they will intersect
at the boundaries). Furthermore, we assume that for each λ ≥ 0,
problem (1) has a unique, finite optimal solution.
We can now show the following lemma.

Lemma 1. The problem

min
x

λmax
k
{cTk x+ dk} + L(x) (8)

subj. to Ax = b
Āx 4 b̄

with L(x) given by (7) has a piecewise linear solution path, i.e., the
optimal x ∈ Rn is a piecewise affine function of λ ∈ [0,∞].

Proof. It is easy to see that the optimum of (8), which is unique
and finite for given λ according to the assumptions, changes
continuously with λ.
Now, we can partition the feasible set into a number of

relatively open polyhedra together with a number of points (the
corners of the polyhedra), denoted Pj (i.e., either Pj = relint(Pj) or
Pj is a single point; for the definition of relative interior, see Boyd
and Vandenberghe (2004)), such that on Pj, the cost function of (1)
equals

λ(cTkjx+ dkj)+
1
2
xTQijx+ f

T
ij x+ rij .

Let the affine hull of Pj (Boyd & Vandenberghe, 2004) be described
by

aff (Pj) = {x | Ãjx = b̃j}

where Ãj is chosen such that it has full row rank.
Assume that the solution to (8) for a givenλ lies in Pj. Then, since

this solution is either in the relative interior of Pj or the only point
of Pj, it is also the solution to

min
x

λ(cTkjx+ dkj)+
1
2x
TQijx+ f

T
ij
x+ rij (9)

subj. to Ãjx = b̃j

But the solution to this problem can be computed as

x = Q−1ij

((
ÃTj (ÃjQ

−1
ij
ÃTj )
−1ÃjQ−1ij − I

)
(fij + ckjλ)

+ ÃTj (ÃjQ
−1
ij
ÃTj )
−1b̃j

)
(10)

(see Roll (2007)). Here, x is linear in λ. This means that the solution
to (8) must consist of a number of such linear pieces, one piece for
every Pj that the solution path passes through. Hence, the solution
path is piecewise linear. �

Remark 2. The strict convexity condition for L(x) can be relaxed.
It is sufficient that L(x) is strictly convex in a neighborhood of each
point on the solution path, and convex elsewhere.
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