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a b s t r a c t

In this paper, we solve the tracking and disturbance rejection problem for fully actuated passive
mechanical systems. We assume that the reference signal r and its first two derivatives ṙ, r̈ are available
to the controller and the disturbance signal d can be decomposed into a finite superposition of sinewaves
of arbitrary but known frequencies and an arbitrary L2 signal. We combine the internal model principle
with the ideas behind the Slotine–Li adaptive controller. The internal model-based adaptive controller
that we propose causes the closed-loop state trajectories to be bounded, and the tracking error and its
derivative to converge to zero, without any prior knowledge of the plant parameters. An important part
of our results is that we prove the existence and uniqueness of the state trajectories of the closed-loop
system.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The internal model principle for LTI systems suggests that
the dynamic structure of the exosystem must be included in the
controller. For example, to eliminate the steady-state error for step
reference or disturbance signals, we need integrators in the loop. If
an internal model with transfer function 1/(s2+ω2) (with suitable
multiplicity) is in the feedback loop and the closed-loop system
is stable, then we obtain tracking and/or disturbance rejection for
sinusoidal reference and disturbance signals of frequency ω, see
for example Davison and Goldenberg (1975). If the reference and
disturbance signals are periodic, then the internal model principle
leads to repetitive control (see for example Hara, Yamamoto,
Omata, and Nakano (1988), and Weiss and Häfele (1999)).
The idea of an internal model has been generalized for output

regulation of nonlinear systems by Byrnes, Delli Priscoli, and Isidori
(1997) and Isidori (1995). In Byrnes et al. (1997) and Isidori
(1995), the exogenous signal is generated by an exosystem and
the existence of the controller requires the solvability of the
Byrnes–Isidori regulator equations. Recent results on the output
regulation of nonlinear systems can be found in Byrnes and Isidori
(2003), Delli Priscoli (2004), Huang and Chen (2004) and Serrani,
Isidori, and Marconi (2001).
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In Jayawardhana and Weiss (2005, in press), a simple LTI
internal model is used to solve the disturbance rejection problem
for passive nonlinear plants. In Jayawardhana andWeiss (in press),
the disturbance d is assumed to be of the form d = d0 + dE , where
d0 ∈ L2 ([0,∞),Rm), and dE is generated by an LTI exosystem (as
in (19)). No precise knowledge of the plant parameters is required
in Jayawardhana and Weiss (in press). In this paper, the plant is
a fully actuated mechanical system with the vector of generalized
coordinates denoted by q, which should track aC2 reference signal
r . We combine an LTI controller as in Jayawardhana and Weiss
(in press) with a Slotine–Li type adaptive controller (see Slotine
and Li (1988)) for rejecting a disturbance signal d = d0 + dE
as in Jayawardhana and Weiss (in press) and for asymptotically
tracking r . We assume that the signals r , ṙ and r̈ are available to
the controller, but the controller does not know the parameters of
the plant.
Our construction can be modified to allow the same LTI

compensator to be combined with other passivity-based tracking
controllers, for example, the passivity-based adaptive tracking
controller in Slotine and Li (1989) or the adaptive tracking
controller with adaptive friction compensator in Panteley, Ortega,
and Gäfvert (1998).
In Scherpen and Ortega (1997), it is shown that by using the

Slotine–Li controller and by adding to it a high gain proportional
block from the tracking error to the input, the L2 gain from the
disturbance to the tracking error can be made arbitrarily small.
However, this approach does not assure that the error converges
to zero for a disturbance which is not in L2. For a recent survey on
tracking controllers for fully actuatedmechanical systemswe refer
to Sage, de Mathelin, and Ostertag (1999). Results related to those
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in our paper have appeared in Bonivento, Gentili, and Paoli (2004).
The controller in Bonivento et al. (2004) uses an adaptive internal
model to find the frequencies of the disturbance, with the plant
assumed to be known, while we use an adaptive controller to deal
with uncertainty in the plant parameters (with the frequencies
known).
We believe that ourmain contribution is to combine an internal

model, which is usually considered for time-invariant systems,
with the Slotine–Li controller, even though the latter leads to a
time-varying system. Moreover, we allow an L2 component in the
disturbance signal, which is a new feature, and we are careful to
prove the existence and uniqueness of state trajectories for the
closed-loop system.We also show that both the tracking error and
its time derivative tend to zero.
Our main results are stated and proved in Section 3. Due to the

space constraints, we have no space to include simulation results.
For this and for a design procedure for the internal model we refer
to Jayawardhana (2006).
Notation. Throughout this paper, the inner product on any Hilbert
space is denoted by 〈·, ·〉 and R+ = [0,∞). We refer to Khalil
(2000) and van der Schaft (2000) for basic concepts on nonlinear
systems and on passivity theory. For a finite-dimensional vector

x, we use the norm ‖x‖ =
(∑

n |xn|
2
) 1
2 and for matrices, we use

the operator norm induced by ‖ · ‖ (the largest singular value).
For a square matrix A, σ(A) denotes the set of its eigenvalues.
For any finite-dimensional vector space V endowed with a norm
‖ · ‖V , the space L2(R+,V) consists of all the measurable functions
f : R+ → V such that

∫
∞

0 ‖f (t)‖
2
Vdt < ∞. The square-root

of the last integral is denoted by ‖f ‖L2 . For f ∈ L
2 (R+,V) and

T > 0, we denote by fT the truncation of f to [0, T ]. The space
C1(Rl,Rp) consists of all the continuously differentiable functions
f : Rl → Rp, while C2(R+) consists of all the twice continuously
differentiable functions r : R+ → R.

2. The Slotine–Li controller

Consider the problem of tracking a C2 reference signal r with
the generalized coordinates q of a fully actuated mechanical
system, without precise knowledge of the plant parameters. It is
known that in the absence of disturbances, the Slotine–Li adaptive
controller from Slotine and Li (1988) achieves asymptotic tracking
of r with bounded state trajectories. In this section, first we
show that the Slotine–Li feedback law applied to a fully actuated
mechanical system produces a time-varying passive system. Using
this, we generalize the results of Slotine and Li (1988) by allowing
an L2 disturbance to act on the plant. We show that, in spite of
this disturbance, not only does the tracking error e tend to zero
(as shown in van der Schaft (2000)) but also its time derivative ė.
We consider a plant P described by

M(q)q̈+D(q, q̇)q̇+ g(q) = u, (1)

which we call a fully actuated mechanical system. Such systems
often originate from Euler–Lagrange equations for mechanical
systems and they have been extensively studied, see Astolfi,
Limebeer, Melchiorri, Tornambe, and Vinter (1997) and Ortega,
Loría, Nicklasson, and Sira-Ramírez (1998). Here, q(t) ∈ Rn is the
vector of generalized coordinates,M(q) is self-adjoint and

m1I ≤M(q) ≤ m2I, wherem1,m2 > 0, (2)

g(q) is a locally Lipschitz continuous function (which usually
represents forces due to the potential energy) and u(t) ∈ Rn is the
input (usually, forces or torques). The functionM(·) is assumed to
be continuously differentiable andD(·, ·) is assumed to be locally
Lipschitz continuous. As usual, we denote Ṁ(q, q̇) =

∑n
j=1

∂M
∂qj
q̇j.

The state of this system is the vector
[
q
q̇

]
. We assume that J(q, q̇) =

Ṁ(q, q̇)− 2D(q, q̇) satisfies JT(q, q̇)+ J(q, q̇) ≤ 0, so that〈(
1
2

Ṁ −D

)
a, a

〉
≤ 0 ∀a ∈ Rn. (3)

We remark that if g(q) = (∇V (q))T, where V ∈ C1(Rn,R+)
is called the potential energy, then the plant P with output signal
q̇ is passive with respect to the storage function H(q, q̇) =
1
2 〈M(q)q̇, q̇〉+V (q), i.e., if a state trajectory exists then Ḣ ≤ 〈q̇, u〉.
Wemention that if JT+ J = 0 then this system is energy preserving,
meaning that Ḣ = 〈q̇, u〉.
We assume that r ∈ C2 (R+,Rn) and the signals r, ṙ, r̈ are

available to the controller. The input signal u is the sum of a
disturbance signal d and the control input s (generated by the
controller thatwe shall design), see Fig. 2(a).We assume thatM,D
and g are not known exactly, but we can express them in terms of
unknown real parameters θ1, θ2, . . . , θm as follows:

M(q) =
m∑
i=1

Mi(q)θi +M0(q),

D(q, q̇) =
m∑
i=1

Di(q, q̇)θi +D0(q, q̇),

g(q) =
m∑
i=1

gi(q)θi + g0(q),


(4)

whereMi is of class C1 andDi, gi are locally Lipschitz continuous.
For any q, q1, a, b ∈ Rn, we introduce the matrix Φ(q, q1, a, b) ∈
Rn×m such that

Φ(q, q1, a, b)θ =

(
m∑
i=1

Mi(q)θi

)
a+

(
m∑
i=1

Di(q, q1)θi

)
b

+

m∑
i=1

gi(q)θi, (5)

where θ =
[
θ1 θ2 · · · θm

]T is the parameter vector.
We describe a first feedback loop which is based on the

Slotine–Li controller and which eliminates r from the picture, so
that the problem is reduced to the input disturbance rejection
problem. We denote by M̂(q), D̂(q, q̇) and ĝ(q) the estimates of
M(q),D(q, q̇) and g(q) corresponding to the estimate θ̂ of the
unknown parameter vector θ . (This means that M̂(q) is obtained
from (4) by replacing θ with θ̂ , and similarly for D̂(q, q̇) and ĝ(q).)
Consider the feedback law

u = M̂ξ̇ + D̂ξ + ĝ + v, (6)
where

ξ := ṙ +Λ(r − q), Λ = ΛT ≥ µI > 0, (7)
and v is the new input signal, containing d and any other
components of the control input z (to be designed). The estimated
parameters θ̂ evolve according to

˙̂
θ = −λΦ(q, q̇, ξ̇ , ξ)Tζ , (8)
where ζ = q̇−ξ andλ ∈ Rm×m,λ = λT > 0, see Fig. 1. Substituting
(6) into (1) gives
M(q)ζ̇ +D(q, q̇)ζ =

[
M̂(q)−M(q)

]
ξ̇

+
[
D̂(q, q̇)−D(q, q̇)

]
ξ + ĝ(q)− g(q)+ v. (9)

Introducing the estimation error θ̃ = θ̂ − θ , we have M̂(q) −
M(q) =

∑m
i=1Mi(q)θ̃ , andwe have similar formulas for D̂(q, q̇)−

D(q, q̇) and ĝ(q)− g(q). Now using (5), the formula (9) becomes

M(q)ζ̇ +D(q, q̇)ζ = Φ(q, q̇, ξ̇ , ξ)θ̃ + v. (10)
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