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a b s t r a c t

Model-based feedback control of vibration in flexible structures can be complicated by the possibility that
interactionwith an external body occurs. If not accounted for, instability or poor performancemay result.
In this paper, a method is proposed for achieving robust vibration control of flexible structures under
contact. The method uses robust linear state feedback, coupled with a state estimation scheme utilizing
contact force measurement. Uncertain contact characteristics are modelled by a sector-bounded non-
linear function, such that state feedback gains can be synthesized using a matrix inequality formulation
of the Popov stability criterion. A separation theorem is used to establish a robust H2 cost bound for
the closed loop system. Experimental results from a multi-mode flexible structure testbed confirm that
vibration attenuation and stability can be maintained over a broad range of contact characteristics, in
terms of compliance and clearance.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The design ofmodel-based controllers for vibration suppression
may be complicated by the possibility that the structure under
control makes contact with an external body. If this interaction
has not been considered in the dynamic modelling of the system,
then instability or poor control performance may result. This issue
is pertinent to a variety of engineering systems, including large
moveable structures such as space structures, bridges, telescopes;
flexible manipulators or robots mounted on flexible structures;
flexible rotor systemswith active elements e.g. magnetic bearings;
and active vibration isolation systems with flexible structures.
With such systems, deflection of the structure may be constrained
by actuators with limited stroke, machine components with
limited clearance or contact with external bodies.
In structural vibration control, linear multi-variable design

techniques can account for some types of model uncertainty. For
example, the use of frequency domain uncertainty bounds inH∞
designs can account for unmodelled dynamics, as applied to a
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smart structure satellite by Moreira, Roberto de Franca Arruda,
and Inman (2001). H∞ designs have also been applied to civil
engineering structures, with sensor and actuator locations chosen
to give additional robustness to neglected modes (Kar, Seto,
& Doi, 2000). Structured uncertainty models can give better
performance-robustness trade-offs, particularly when uncertainty
in natural frequencies and damping of flexural modes must be
dealt with Balas and Doyle (1994) and Boulet, Francis, Hughes,
and Hong (1997). Unfortunately, these methods are not suited to
structures with contact constraints, as the contact characteristics
can be both uncertain and non-linear. Moreover, if the contact is
stiff compared with the compliance of the structure, then the open
loop dynamics can change markedly under contact and robust
stability requirements will be severe.
Certain symmetric controller designs have attractive properties

when applied to flexible structures with collocated actuators
and sensors (Arbel & Gupta, 1981; Fujisake, Ikeda, & Miki,
2001; Nagashio & Kida, 2004). Closed loop stability follows from
positive definiteness of the model matrices, and is independent
of parameter values. Symmetric controllers giving optimal linear
quadratic (Nagashio & Kida, 2004) andH∞ (Arbel & Gupta, 1981)
performance have both been derived. In some systems, however,
collocation is not an option, and even when it is, there may be
benefits to be gained, in terms of performance or fault tolerance,
by using additional sensors or actuators. Thus, there is good
motivation for developing design methods that can cope with
non-collocation.
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When structures are excited by broadband disturbances,
quadratic measures of vibration attenuation are often appropriate,
and so there have been recent efforts to develop robust H2
controllers for uncertain linear systems, particularly with real
parameter uncertainty. Methods of controller synthesis based
on the Popov criterion and related Lur’e Postnikov Lyaponov
function have proved attractive, as stability multipliers can be
used to establish tight bounds on robust stability and performance
(Haddad & Bernstein, 1995). Popov controller synthesis has been
used successfully on aerospace structures to achieve robust
performance with uncertain natural frequencies (How, Collins, &
Haddad, 1994; How, Hall, & Haddad, 1994).
This paper applies a Popov-based controller synthesis to a

class of system where contact between a flexible structure and
an external body can be modelled by a sector-bounded static
non-linearity. A linear state feedback design with a robust H2
cost bound is synthesised, using a matrix inequality formulation
of the Popov stability criterion. The output feedback controller
employing observer based state feedback possesses separation
properties that can be used to establish a H2 cost bound. The
controller requires inputs of measured contact force, and one or
more vibration variables. The method places no restrictions on the
number of sensor or actuators and does not require collocation.
Experimental results from a multi-mode flexible structure testbed
are presented.

2. Systemmodel

The dynamics of a flexible structure constrained by a single
contact can be described by a finite-dimensional approximation as

M ζ̈ + C ζ̇ + Kζ = Edd− Ec f + Euu
z = Gcζ , y = Gyζ

f = φ(z) ∈ Φ. (1)

The vector ζ ∈ Rn contains n displacement states for the structure,
d ∈ Rnd represents disturbance forces acting on the structure
and u ∈ Rnu are the actuation signals. The system output y ∈
Rny , comprises measurable states available for control feedback.
Contact is assumed to occur at a single known location, such that
the contact force f is a function only of the displacement at the
contact location z. The minus sign is used before Ec as f generally
acts in the opposite direction to z. The matrix M ∈ Rn×n is the
mass matrix, C ∈ Rn×n represents viscous damping forces, and
the stiffness matrix K ∈ Rn×n models the structural compliance.
Parameter values can be derived by standard methods, such as
finite element (FE) modelling, system identification and FE model-
updating.
In state space, the open loop system model follows as

ẋ = Ax+ Bdd− Bc f + Bdu
SystemA : z = Ccx, y = Cyx

f = φ(z) ∈ Φ. (2)

Taking the state vector as x = [ζ T ζ̇ T]T then

A =
[
0n×n In×n
−M−1K −M−1C

]
Bd =

[
0n×nd
M−1Ed

]
, Bc =

[
0n×1
M−1Ec

]
, Bu =

[
0n×nu
M−1Eu

]
Cc =

[
Gc 01×n

]
, Cy =

[
Gy 0ny×n

]
. (3)

The uncertain contact force is assumed to be a function of the local
displacement state f = φ(z) ∈ Φ , satisfying

Φ , {φ(z) : 0 ≤ zφ(z) ≤ kz2}. (4)

Fig. 1. Sector-bound contact force model: encompasses typical nonlinear stiffness
characteristics with clearance.

This sector-bound condition (equivalent to f (f − kz) ≤ 0) can
accommodate a range of non-linear contact force characteristics,
including the finite clearance example in Fig. 1. The condition is
also applicable when the clearances between the structure and
the contact surfaces are uncertain, or slowly changing. Following
a brief statement of notation and formulas, the remainder of the
paper is divided into two main parts. The first part covers the
controller design method, while the second part presents results
from modelling and experiment involving a multi-mode testbed.

2.1. Notation

E, tr — expectation value, trace
A < 0, A ≤ 0 — negative definiteness, semi-definiteness of
symmetric matrix A
In×m — n×m identity matrix
diag(a1, . . . , an)—denotes the n×n diagonalmatrixwith diagonal
elements a1, . . . , an.

Lemma 1. Schur complement formula:[
X NT

N Y

]
< 0⇔ X − NTY−1N < 0, Y < 0

where X and Y are symmetric matrices.

Lemma 2. X < 0 ⇔ RXRT < 0 where R is any square nonsingular
matrix of compatible dimensions.

3. Controller design method

3.1. Robust performance criterion

Consider a general closed loop system model appropriate to
linear feedback control of System A:

ẋ = Ax+Bdd−Bc f
SystemB : z = Ccx, w = Cwx

f = φ(z) ∈ Φ. (5)

The output w comprises signals to be regulated. With a dynamic
controller of order nc then x ∈ R2n+nc .
A bound on robust performance can be established for System

B, based on an impulse-response interpretation of the H2
norm (Paganini & Feron, 1997), evaluated as theworst-case energy
of the output w for impulse input d = d0δ(t) averaged over all
random vectors having covariance E(dT0d0) = I . Adopting a Lur’e
type Lyapunov function candidate (Haddad & Bernstein, 1995;
Popov, 1961):

V (x) = xTPx+ 2ν
∫ z

0
φ(λ)dλ. (6)

P = PT > 0 and ν ≥ 0 must be found, such that

V̇ (x)+ wTw < 0 ∀x 6= 0, φ(z) ∈ Φ. (7)
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