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a b s t r a c t

In this paper, the problem of identifying linear discrete-time systems from noisy input and output data is
addressed. Several existing methods based on higher-order statistics are presented. It is shown that they
stem from the same set of equations and can thus be united from the viewpoint of extended instrumental
variablemethods. A numerical example is presentedwhich confirms the theoretical results. Somepossible
extensions of the methods are then given.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Identification of errors-in-variables (EIV) models has been a
very active domain of research in the past few years (see e.g.
Diversi, Guidorzi, and Soverini (2007), Hong, Söderström, and
Zheng (2007), Mahata and Garnier (2006), Mahata (2007), Pintelon
and Schoukens (2007), Söderström (2008), Thil, Garnier, Gilson,
and Mahata (2007) and Thil, Gilson, and Garnier (2008)), and a
survey paper gatheringmost of the known developments has been
recently published (Söderström, 2007).
Most of the research has been concerned with estimating the

parameters of discrete-time EIV models with the help of second-
order statistics. Nonetheless, a recently published paper (Thil,
Garnier, & Gilson, 2008) has shown that continuous-time EIV
model identification can be successfully handled using higher-
order statistics (HOS). Althoughmuch work has been conducted in
the HOS field for EIV model identification in the 90’s, it seems that
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several questions concerning the practical use of HOS for system
identification remain to be answered.
The aim of this paper is to present someHOS-basedmethods for

EIV model identification in a unified way. More precisely, the links
between the methods developed in Inouye and Tsuchiya (1991)
and Chen and Chen (1994) and the discrete-time version of an
algorithm presented in Thil, Garnier et al. (2008) are explored. It
is shown that these methods stem from the same set of equations.
Simulation results support the theoretical analysis, and some
possible extensions for future work are given.

2. Errors-in-variables framework

Consider a discrete-time, linear, time-invariant EIV system. The
noise-free input/output signals are related by

yo(t) = Go(q)uo(t) (1)

where q is the forward operator and Go(·) is the transfer operator
of the ‘true’ system. The input and output signals are both
contaminated by noise sequences, denoted as ũ and ỹ, respectively.
The data-generating system is thus given by{yo(t) = Go(q)uo(t)
u(t) = uo(t)+ ũ(t)
y(t) = yo(t)+ ỹ(t).

(2)
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It is then parameterized as follows:
y(t) = G(q, θ)

(
u(t)− ũ(t)

)
+ ỹ(t)

G(q, θ) = B(q−1, θ)/A(q−1, θ)
A(q−1, θ) = 1+ a1q−1 + · · · + anaq

−na

B(q−1, θ) = b0 + b1q−1 + · · · + bnbq
−nb

(3)

with na > nb and θT =
[
a1 · · · ana b0 · · · bnb

]
. Equation (3) can be

rewritten as

y(t) = ϕT(t)θ + v(t, θ) (4)

v(t, θ) = ỹ(t)− ϕ̃T(t)θ (5)

where the regression vector is given by

ϕT(t) = [−y(t − 1) · · · − y(t − na) u(t) · · · u(t − nb)] (6)

and ϕ̃(t) is defined in a similar way to ϕ(t), but with u and y
being replaced by ũ and ỹ, respectively. The problem of identifying
this errors-in-variables model is concerned with consistently
estimating the parameter vector θ from the noisy input/output
data {u(t), y(t)}Nt=1.

2.1. Notations

As the input and output noises are additive, linear functions
of the measured signals can be broken down into two parts: one
part made up of the noise-free signal contribution (denoted with
an ‘o’ subscript) and the other made up of the noises’ contribution
(denoted with the ‘ ˜ ’ sign). For example, the regression vector ϕ
can be decomposed into

ϕ(t) = ϕo(t)+ ϕ̃(t). (7)

The following notations are used inwhat follows for the correlation
vectors and matrices

Rϕϕ = Ēϕ(t)ϕT(t), rϕy = Ēϕ(t)y(t) (8)

where Ē{·} stands for (see Ljung (1999))

Ē{f (t)} = lim
N→∞

1
N

N∑
t=1

E{f (t)}. (9)

The notation used for the third-order cumulants is

Cx1x2x3(τ1, τ2) = Ē{x1(t)x2(t + τ1)x3(t + τ2)} (10)

= Cx1x2x3(τ) (11)

where, for the sake of conciseness, τ denotes [τ1, τ2].

2.2. Assumptions and elements of structure

The following assumptions are needed

A1. The system (1) is asymptotically stable, and all the system
modes are observable and controllable;

A2. The signals uo, ũ and ỹ are stationary, ergodic and zero-mean;
A3. The signals ũ and ỹ are assumed to be uncorrelated with the
input uo.

For methods based on second-order statistics to give unbiased es-
timates, it is usually assumed (and often implicitly) that the ‘true’
system belongs to the consideredmodel set, a situation referred to
as S ∈ M? (Ljung, 1999). However, this notation has been intro-
duced for systemswith noise-free inputs, and – being too general –
is not properly suited for errors-in-variables models. Indeed, more
often than not, the input and output noises and the noise-free input
must be modeled. Thus, some additional notations must be intro-
duced. The whole ‘true’ system includes

(1) the ‘true’ processGo and its associatedmodel setG?= {G(·, θ)},
(2) the ‘true’ noise processesH ũo ,H

ỹ
o and their associatedmodel set

H?
=
{
H ũ(·, η), H ỹ(·, η)

}
,

(3) the ‘true’ noise-free input processHuoo and its associatedmodel
set E? = {Huo(·, η)},

where η is a vector gathering the parameters of noise models and
noise-free input models.
In addition to assuming that the ‘true’ process belongs to the

model set, i.e., Go ∈ G?, most methods based on second-order
statistics require that the noise models belong to the model set,
i.e.,

(
H ũo ,H

ỹ
o

)
∈ H?. A few even require that the noise-free input

is adequately modeled, and thus that Huoo ∈ E?. For example, the
maximum likelihood and prediction error methods require such
assumptions (Söderström, 1981, 2007).
On the contrary, methods based on higher-order statistics do

not require structural assumptions on the input and output noises
ũ, ỹ, and on the noise-free input uo. The only structural assumption
needed is

A4. The true process belongs to the model set: Go ∈ G?.

The input and output noises can thus be arbitrarily coloured (and
even mutually correlated), and there is no structural assumption
on the noise-free input. However, for the higher-order cumulants
of the noises to be zero and for the higher-order cumulants of
the noise-free input not to be zero, distributional assumptions are
needed. These distributional assumptions differ whether third- or
fourth-order cumulants are used. For the third-order cumulants,

A5a. The input and output noises ũ, ỹ have symmetric probability
density functions (pdfs),

A6a. The noise-free input uo has a skewed pdf.

For the fourth-order cumulants,

A5b. The input and output noises ũ, ỹ have Gaussian pdfs,
A6b. The noise-free input uo has a non-Gaussian pdf.

In what follows, the focus will be placed on the case of third-
order cumulants, and consequently the assumptions A1–A4 and
A5a–A6a are supposed to be satisfied.

3. Identification methods using HOS

3.1. Properties of HOS

The identification techniques presented in this paper are based
on higher-order statistics (see e.g. Brillinger (1981) and Mendel
(1991)). Herewe recall a few of the numerous properties of higher-
order cumulants.

P1. Multilinearity: cumulants are linear with respect to each of
their arguments;

P2. Additivity: if two random vectors are independent, then the
cumulant of their sum equals the sum of their cumulants;

P3. The third-order cumulant of a random variable with a
symmetric pdf is equal to zero.

From assumptions A3, A5a, A6a and using properties P2, P3, the
following holds

Cuuy(τ) = Cu0u0y0(τ)+ Cũũỹ(τ) = Cu0u0y0(τ)
Cuuu(τ) = Cu0u0u0(τ)+ Cũũũ(τ) = Cu0u0u0(τ).

The third-order (cross-)cumulants of the input and output signals
are thus insensitive to symmetrically distributed noises. Note that
this result is still valid for the third-order (cross-)cumulant of any
combination of input and output signals.
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