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Abstract

This paper provides several stability tests for piecewise linear systems and proposes a method of stabilization for bimodal systems. In
particular, we derive an explicit and exact stability test for planar systems, which is given in terms of coefficients of transfer functions of
subsystems. Restricting attention to the bimodal and planar case, we show simple stability tests. In addition, we drive a necessary stability
condition and a sufficient stability condition for higher-order and bimodal systems. They are given in terms of the eigenvalue loci and the
observability of subsystems. All the stability tests provided in this paper are computationally tractable, and our results are applied to the
stabilizability problem. We confirm the exactness and effectiveness of our approach by illustrative examples.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Hybrid control has received much attention in the area of
control system design, since we have many practical control
applications which contain both continuous-time dynamics and
logical or switching elements. There have been a lot of math-
ematical models proposed to represent behaviors of hybrid
control systems. One of the typical models is the piecewise lin-
ear (PWL) system. The system consists of some pairs of linear
time-invariant dynamics and a cell which is a piece of a parti-
tion of the state space, and the state evolves along the dynam-
ics associating with the cell in which the state exists. The class
of PWL systems is one of the fundamental classes of hybrid
dynamical systems, since the hybrid dynamics is quiet simple
compared with those of other classes of hybrid control systems.
Study on PWL systems is therefore important as a first step
to establish hybrid control theory. Actually, stability analysis
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of PWL systems is required for stability analysis of piecewise
affine systems in a neighborhood of the origin.

In the last decade, many results have been obtained on sta-
bility for several classes of hybrid dynamical systems (see
Decarlo, Branicky, Petersson, & Lennartson, 2000; Liberzon,
2003; Lygeros, Johansson, Simic, Zhang, & Sastry, 2003 and
the references therein). Most of the results are extensions of
Lyapunov’s theorem, where we need to show the existence of
a Lyapunov function which guarantees the stability. The Lya-
punov methods provide not only sufficient conditions but also
necessary conditions for stability under hybrid natures. Actu-
ally, the converse theorems ensure the existence of a Lyapunov
function when the system is asymptotically stable (Dayawansa
& Martin, 1999; Michel & Hu, 1999; Molchanov & Pyatnitskii,
1986; Ye, Michel, & Hou, 1998).

In spite of the recent progress, there still remain fundamental
problems on stability for hybrid control systems to be clarified.
A major problem is how to check the stability exactly. We
must restrict available classes of Lyapunov functions within a
class of piecewise quadratic functions (Gonçalves, Megretski,
& Dahleh, 2003; Pettersson & Lennartson, 2002; Rantzer &
Johansson, 2000) or a class of sums of squares (Prajna &
Papachristodoulou, 2003; Spanos & Gonçalves, 2004) to give
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systematic ways of finding the Lyapunov functions. This
makes the stability conditions conservative. In fact, we cannot
check the stability even for the class of PWL systems exactly.
In particular, for any bimodal PWL system with an unstable
subsystem, there exists no piecewise quadratic Lyapunov func-
tion even if the origin is stable or the S-procedure is applied
(van der Schaft & Schmacher, 2000), though the S-procedure is
sometimes efficient for checking the stability of general PWL
systems with unstable subsystems. We therefore need a new
approach to get a less conservative stability condition or hope-
fully to derive a necessary and sufficient stability condition.

To this end, we here discuss the stability problem for PWL
systems from a different perspective. Instead of using Lya-
punov’s theory, we investigate behavior of PWL systems di-
rectly to get stability tests which are computationally tractable.
Recently, direct analysis of behaviors of hybrid states has led to
exact stability tests for certain classes of switched systems. Xu
and Antsaklis (2000) derived necessary and sufficient condi-
tions for stabilizability of a class of planar and linear switched
systems through an investigation of behaviors of the systems.
In Boscain (2002), necessary and sufficient stability conditions
were provided for a class of planar switched systems with arbi-
trary switching. None of the two papers treat any extensions of
Lyapunov’s theorem. Note that the two classes of switched sys-
tems are quiet different from the class of PWL systems, since
the switching in the two classes of switched systems does not
depend on the continuous state. Indeed, the switching is an in-
put to the systems in Xu and Antsaklis (2000) and the switch-
ing takes place arbitrarily in Boscain (2002). Hence, we require
yet different investigation from each of the classes of switched
systems.

This paper provides several stability tests for PWL systems
and proposes a method of stabilization for bimodal systems. In
particular, we derive an explicit and exact stability test for pla-
nar systems, which is given in terms of coefficients of transfer
functions of subsystems. Restricting attention to the bimodal
and planar case, we show simple stability tests. In addition,
we drive a necessary stability condition and a sufficient stabil-
ity condition for higher-order and bimodal systems. They are
given in terms of the eigenvalue loci and the observability of
subsystems. All the stability tests provided in this paper are
computationally tractable. Our results are then applied to the
stabilizability problem. We confirm the exactness and effective-
ness of our approach by illustrative examples.

This paper is organized as follows. Section 2 gives a basic
setup for representing a class of PWL systems. Section 3 is
devoted to stability analysis based on behavior of systems. We
give an explicit and exact stability test for planar PWL systems
in terms of coefficients of transfer functions of subsystems in
Section 4. Section 5 considers bimodal case, and we provide
simple stability tests for planar systems and derive a necessary
condition and a sufficient condition for stability of higher-order
systems. In Section 6, we discuss the stabilizability problem
based on the sufficient stability condition. Most of proofs are
collected in appendices.

In this paper, we will use the following notation. The symbols
Z, R, and R+ represent the set of integers, the set of real

numbers, and the set of positive real numbers, respectively. The
symbols Rn and Rn×m stand for the set of all n-dimensional
real column vectors and the set of all n × m real matrices,
respectively.

2. Piecewise linear systems

We consider a class of PWL systems represented by

ẋ = f (x) :=

⎧⎪⎪⎨
⎪⎪⎩

A1x if x ∈ S1,

A2x if x ∈ S2,
...

...

Amx if x ∈ Sm,

(1)

where Ai ∈ Rn×n and Si are convex cone of the form

Si := {x ∈ Rn|Cix�0}, (2)

with Ci ∈ Rn×n (i = 1, . . . , m). A matrix Ai may be equal to
Aj (j �= i) as seen in Fig. 1. The vector field f (x) may be
discontinuous on the boundary �Si . The solution from a given
initial state x0 is denoted by x(t, x0) where the initial time is
always set 0. This paper basically focuses on two subclasses of
PWL systems, called the planar case and the bimodal case. The
planar case implies n = 2 and m�2. The bimodal case means
m = 2 and n�2.

We here use two notions, called memoryless and well-
posedness, to clarify the class of systems treated in this paper.

First, system (1) is said to be memoryless, if all the following
conditions hold:

Si �= Rn ∀i, (3)

int Si �= ∅ ∀i, (4)

∪m
i=1Si = Rn, (5)

int(Si ∩ Sj ) = ∅ ∀(i, j), (i �= j). (6)

It is clear that (3)–(6) are quite natural and hence they are not
restrictive for systems with memoryless nonlinearities. Note
that both (3) and (4) hold, if det Ci �= 0 for all i. In addition,
every bimodal system can be represented by

ẋ =
{

A1x if cx�0,

A2x if cx�0,
(7)

where c(�= 0) ∈ R1×n, if the system is memoryless.

Fig. 1. Planar and multi-modal piecewise linear model.



Download	English	Version:

https://daneshyari.com/en/article/698066

Download	Persian	Version:

https://daneshyari.com/article/698066

Daneshyari.com

https://daneshyari.com/en/article/698066
https://daneshyari.com/article/698066
https://daneshyari.com/

