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Abstract

Robust stability conditions are derived for linear time-delay systems using Lambert W function. The characteristic quasi-polynomials of the
systems are assumed to be factorized. It is proven that if uncertainties in the coefficients of the quasi-polynomial are set in appropriate regions
in the complex plane, we can enjoy extreme point results: finite number of stability checks at some points of the boarder of the regions suffice.
The strength of Lambert W function approach lies in the fact that the function is implemented on some standard software packages such as
Mathematica, Maple or Matlab which afford to compute the function value very easily. The above two points make the stability test for the
class of uncertain time-delay systems quite practical.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Stability robustness is one of central concerns for control
of time-delay systems and considerable amount of results on
the topic are currently available. If the focus is confined to
linear time-delay systems, two different approaches are mainly
taken: time domain approach and frequency domain one. For
the time domain approach, Lyapunov–Krasovskii functionals
are employed, leading to various LMI conditions (Gu, 2001;
Gu, Kharitonov, & Chen, 2003; Niculescu, 2001; Park, 1999).
While they are mostly sufficient conditions for the stabil-
ity, some can give necessary and sufficient conditions using
specific Lyapunov–Krasovskii functionals (Gu et al., 2003;
Kharitonov & Zhabko, 2003). As the frequency domain ap-
proach, frequency sweeping tests (Chen & Niculescu, 2004;
Gu et al., 2003) and the Edge Theorem (Fu, Olbrot, & Polis,
1989; Gu et al., 2003; Niculescu, 2001) are known. In Chen and
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Niculescu (2004), a sufficient condition for quasi-polynomials
with commensurate delays to be robustly stable independent
of delay has been derived. In Wang, Hu, and Kupper (2004),
an algorithm to check robust stability of a polytope of quasi-
polynomials with the help of the Edge Theorem has been
proposed. The result gives an exact answer to the stability
problem, yet the computational complexity surfaces as the
number of edge quasi-polynomials grows.

An alternative way in the frequency domain approach is to
invoke Lambert W function (Asl & Ulsoy, 2000; Hwang &
Cheng, 2005). The function has found many applications in a
variety of science and engineering disciplines (see e.g., Corless,
Gonnet, Hare, Jeffrey, & Knuth, 1996). In Asl and Ulsoy (2000),
the function is used for stability analysis of scalar linear time-
delay systems and of linear delay systems having only a delay
term. The function is also used in Hwang and Cheng (2005)
for analysis of fractional-order time-delay systems and cautions
are given there about its application to such systems.

In this paper, we apply the Lambert W function method to
robust stability analysis of linear time-delay systems with sin-
gle delay. The advantages of the function consist of the facts
that it enables to express the characteristic roots of the systems
explicitly and to give non-conservative analysis results. Mak-
ing the best of these points, we derive necessary and sufficient
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conditions for linear time-delay systems to be robustly stable
dependent of delay. A proviso is, however, that system char-
acteristic quasi-polynomials are factorized so that the analysis
boils down to studying scalar systems. This may narrow the ap-
plicability of the obtained results, but would be, to the authors’
belief, the price paid to obtain the above advantageous points.
Some triangularizability conditions serve for the factorization.
It should be stressed that the conditions are extreme point re-
sults: when uncertainties of the coefficients of the systems are
expressed as suitable bounded sets, the conditions require only
information on extreme points of the sets of the uncertainties.
It should be also noted that commonly available software such
as Mathematica, Maple or Matlab which implement calculator
of the Lambert W function enables to check the robust stability
easily.

The organization of this paper is as follows. In the next
section, we give introductory expositions of the Lambert W

function with its definition and a key property. The proof of
the property is relegated to Appendix A. Section 3 gives the
main results. Necessary and sufficient robust stability condi-
tions are derived for linear time-delay systems with box-type
uncertainty in the non-delay term coefficient and sector-type
uncertainty in the delay term one. A numerical example of the
obtained results is illustrated in Section 4 and Section 5 con-
cludes the paper.

2. Lambert W function

Lambert W function is defined as the function satisfying

W(z)eW(z) = z, (1)

where W : C → C (Corless et al., 1996). W maps z-plane to
w-plane, i.e. w = W(z), and can be expressed as

z = a + jb, w = � + j�. (2)

Then substituting (2) to (1) gives

a = e�(� cos � − � sin �), b = e�(� cos � + � sin �). (3)

Without loss of generality, we can restrict the argument of
z-variable to (−�, �].

Remark 1. It is noted that since (1) includes no complex pa-
rameters, the range of the Lambert W function is symmetric
with respect to the real axis.

Lambert W function is a multi-valued function, i.e., it has
infinitely many branches. We express the branches as Wk ,
k = 0, ±1, . . . ,±∞. Especially, W0 is said to be the principal
branch. Wk , k = 0, ±1, . . . ,±∞ are single-valued functions,
respectively. Fig. 1 shows the range of each branch. Among
them, W0, W1 and W−1 are mainly related in later discussions.

The branch cut of W0 is defined by {z| − ∞ < Re(z)�
−1/e, Im(z)=0}, while that of the other branches are defined
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Fig. 1. Ranges of the branches of Lambert W function.

by {z | −∞ < Re(z)�0, Im(z)=0}.1 Figs. 2–4 show the map-
ping of z-plane by W0, W1 and W−1, respectively.

For Wk , k �= ±1, the image of the argument +� of the branch
cut in z-plane corresponds to the boundary of Wk+1 in w-plane,
and the argument −� corresponds to the boundary of Wk−1.
For W1, the argument +� of the branch cut corresponds to that
of W2, while the argument −� of the part of the branch cut, {z |
−∞ < Re(z)� − 1/e, Im(z) = 0}, corresponds to that of W0.
The image of the remained {z | −1/e < Re(z)�0, Im(z) = 0}
by W1 corresponds to that of W−1 (Fig. 3). Similar configuration
occurs among W−1, W−2, and W0 (Fig. 4). In these three figures,
markings A–F indicate the correspondence between the two
planes.

Remark 2. If Wk , k=0, ±1, . . . ,±∞ map a curve not crossing
the corresponding branch cut, each of Wk , k = 0, ±1, . . . , ±∞
becomes a homeomorphism, a mapping which, as well as whose
inverse, is both continuous and one to one.

The following property of the Lambert W function is very
important throughout the rest of discussion.

Lemma 3. For arbitrary z ∈ C,

max{Re(Wk(z))|k = 0, ±1, . . . ,±∞} = Re(W0(z))

is satisfied.2

Though this property might have been proven in much earlier
literature, we give a proof in Appendix A to make the discussion
self-contained. Note that Lemmas 11 and 12 in Appendix A,
which are used to show the above lemma, are also cited in the
body of the paper subsequently. Here, however, we give only an
intuitive observation leading to Lemma 3. Consider an image
of a circle

z = rej�, � ∈ (−�, �] (4)

1 Though this definition is different from that in Corless et al. (1996),
we believe it is more suitable so far as W1 and W−1 are concerned.

2 For ease of argument, we make a sort of compactification, i.e., we
regard both W∞ and W−∞ as fixed mappings.
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