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a b s t r a c t

This paper considers the problem of disturbance tolerance/rejection for a family of linear systems subject
to actuator saturation and L2 disturbances. For a given set of linear feedback gains, a given switching
scheme and a given bound on the L2 norm of the disturbances, conditions are established in terms
of linear or bilinear matrix inequalities under which the resulting switched system is bounded state
stable, that is, trajectories starting from a bounded set will remain inside the set or a larger bounded
set. With these conditions, both the problem of assessing the disturbance tolerance/rejection capability
of the closed-loop system and the design of feedback gain and switching scheme can be formulated and
solved as constrained optimization problems. Disturbance tolerance is measured by the largest bound
on the disturbances for which the trajectories from a given set remain bounded. Disturbance rejection is
measured by the restricted L2 gain over the set of tolerable disturbances. In the event that all systems
in the family are identical, the switched system reduces to a single system under a switching feedback
law. It will be shown that such a single system under a switching feedback law has stronger disturbance
tolerance/rejection capability than a single linear feedback law can achieve.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The literature on analysis and design of switched systems
has been growing rapidly in recent years (see, for example,
Branicky (1994), Cheng (2005), DeCarlo, Branicky, Pettersson, and
Lennartson (2000), Liberzon and Morse (1999), Pettersson (1999),
Pettersson and Lennartson (2001), Sun and Ge (2005), Wicks,
Peleties, and DeCarlo (1998) and Xi, Feng, Jiang, and Cheng (2003)
and the references therein). Motivated by the results reported in
this literature, we consider in this paper the following family of
linear systems subject to input saturation and disturbances,{
ẋ = Aix+ Bisat(u)+ Eiw,
z = Cix, i ∈ IN := {1, 2, . . . ,N},

(1)

where x ∈ Rn, u ∈ Rm, z ∈ Rp are respectively the state, input
and output of the system, w ∈ Rq represents the disturbances,
and sat : Rm → Rm is the vector valued standard saturation
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function sat(u) =
[
sat(u1) sat(u2) · · · sat(um)

]T
, sat(ui) =

sign(ui)min{|ui|, 1}. A switched system then results by defining
a controller/supervisor which chooses one of the systems at each
time instant based on the measurement of the state and according
to an index function, say, i = σ(x). A typical form of the index
function is σ(x) = i for x ∈ Ωi with ∪Ni=1Ωi = Rn. Thus, the
control design involves the construction of both feedback gains
for individual systems and the index function so that the resulting
switched system possesses certain desired performances.
In the absence of the disturbances w, a basic design objective

is the local asymptotic stability of the resulting switched system
with as large a domain of attraction as possible. By utilizing some
techniques in dealing with actuator saturation (Hu & Lin, 2001)
and the form of the largest region index function proposed by
Pettersson (2003, 2004, 2005), we recently proposed a method
for the design of the individual feedback gains and the index
function that result in a locally asymptotically stable switched
system Lu and Lin (2008). The design is formulated and solved as a
constrained optimization problem with the objective of enlarging
the domain of attraction of the resulting stable equilibrium at the
origin. It was shown by numerical examples that such a design
may result in a domain of attraction larger than that of a switched
system, designed without taking actuator saturation into account.
In this paper, wewill carry out an analysis of, and design for, the

disturbance tolerance/rejection capability of the switched system
resulting from the family of systems (1). We will restrict ourselves
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to a class of disturbances whose energies are bounded by a given
value, i.e.,

W2
α :=

{
w : R+ → Rq :

∫
∞

0
wT(t)w(t)dt ≤ α

}
, (2)

for some positive number α. For a given set of linear feedback
gains, a given index function and a given value of α, conditions
will be established in terms of linear or bilinear matrix inequalities
underwhich the resulting switched system is bounded state stable.
A system is said to be bounded state stable if its trajectories
starting from a bounded set will remain inside the set or a larger
bounded set. With these conditions, both the problem of assessing
the disturbance tolerance/rejection capability of the closed-loop
system and the design of feedback gain and switching scheme can
be formulated and solved as constrained optimization problems.
Disturbance tolerance is measured by the largest bound on the
energy of the disturbance, α∗, for which the trajectories from a
given set remain bounded. Disturbance rejection is measured by
the restrictedL2 gain overW2

α∗ .
An interesting special class of the systems we consider in this

paper is the case when all the systems in (1) are identical. In
this case, the switched system reduces to a single system under
a switching linear feedback law. It will be shown that for a
single linear system of the form (1), a switching feedback law
will result in stronger disturbance tolerance/rejection capability
than a single linear feedback law of Fang, Lin, and Hu (2004)
and Fang, Lin, and Shamash (2006). TheL2 gain analysis and design
for linear systems under actuator saturation has been studied by
several authors. A small sample of their works include Chitour,
Liu, and Sontag (1995), Fang et al. (2004, 2006), Hindi and Boyd
(1998), Hu and Lin (2001), Lin (1997), Nguyen and Jabbari (1999)
and Xie, Wang, Hao, and Xie (2004). In particular, in our recent
work (Fang et al., 2004, 2006), we considered theL2 gain analysis
and design for a linear system under actuator saturation. The
disturbance tolerance capability of the closed-loop system under a
given feedback law was assessed, and the linear feedback law that
results in a minimized restrictedL2 gain was designed.
The remainder of this paper is organized as follows. In Section 2,

we state our problem and recall some preliminary materials
that will be needed in the development of the results of this
paper. Section 3 establishes bounded state stability conditions.
Disturbance tolerance and disturbance rejection are addressed in
Sections 4 and 5, respectively. Simulation results are presented in
Section 6. Section 7 concludes the paper.

2. Problem statement and preliminaries

For the family of systems (1), we would like to design a linear
feedback law for each individual system in the family and an index
function such that the resulting switched system possesses a high
degree of disturbance tolerance and a high level of disturbance
rejection capabilities.
Wewill adopt the switching strategy of Pettersson (2003, 2004).

Such a switching strategy is defined based on some appropriately
chosen symmetric matrices Qi ∈ Rn×n, i ∈ IN . More specifically,
at a given state x, the subsystem iwill be activated if the quadratic
function xTQix is greater or equal to any other xTQjx, j 6= i. More
specifically, this switching scheme is defined by the following
index function Pettersson (2003, 2004), referred to as the largest
region function,

i(x) = arg
{
max
i∈IN
xTQix

}
. (3)

Based on the matrices Qi’s, we define the following sets

Ωi = {x ∈ Rn|xTQix ≥ 0}, i ∈ IN ,
Ωi,j = {x ∈ Rn|xTQjx = xTQix ≥ 0}, i ∈ IN , j ∈ IN .

Then, a well-defined switched system must satisfy the following
properties:

• Covering property:Ω1 ∪Ω2 ∪ · · · ∪ΩN = Rn;
• Switching property:Ωi,j ⊆ Ωi ∩Ωj, i ∈ IN , j ∈ IN .

The first condition says that there are no regions in the state
space where none of the subsystem is activated. The second
condition, which is automatically satisfied by this choice ofΩi and
Ωi,j, means that a switch from subsystem i to j occurs only for states
where the regionsΩi andΩj are adjacent. Consequently, switching
occurs on the switching surface xTQix = xTQjx. The following
regarding the covering property was established in Pettersson
(2003, 2004).

Lemma 1 (Covering property). If for every x ∈ Rn,

θ1xTQ1x+ θ2xTQ2x+ · · · + θNxTQNx ≥ 0, (4)

where θi > 0, i ∈ IN , thenΩ1 ∪Ω2 ∪ · · · ∪ΩN = Rn.

3. Bounded state stability

We recall a tool from Hu and Lin (2001) for expressing a
saturated linear feedback u = sat(Fx) on the convex hull of a
mixture of the unsaturated control inputs and the auxiliary inputs.
For an F ∈ Rm×n, let L(F) =

{
x ∈ Rn : |fix| ≤ 1, i ∈ Im

}
, where fi

represents the ith row of matrix F . We note that L(F) represents
the region in Rn where F x does not saturate.
Also, letV be the set ofm×m diagonalmatriceswhose diagonal

elements are either 1 or 0. There are 2m elements in V . Suppose
these elements ofV are labeled asDs, s ∈ I2m . DenoteD−s = I−Ds.
Clearly,D−s ∈ V ifDs ∈ V . The following lemma is adopted fromHu
and Lin (2001).

Lemma 2. Let F ,H ∈ Rl×n. Then, for any x ∈ L(H),

sat(Fx) ∈ co
{
DsFx+ D−s Hx, s ∈ I2m

}
,

where co stands for the convex hull.

For a positive definite matrix P ∈ Rn×n and a scalar ρ > 0,
we define E(P, ρ) :=

{
x ∈ Rn : xTPx ≤ ρ

}
. The following theorem

characterizes the bounded state stability of the switched system
that results from the family of systems (1) and the switching
scheme (3).

Theorem 1. Consider system (1). If there exist Pi > 0, ξ > 0,Qi =
Q Ti , Fi ∈ Rm×n, Hi ∈ Rm×n, ϑi ≥ 0, θi > 0 and ηi,j such that

1. (Ai+Bi(DsFi+D−s Hi))
TPi+Pi(Ai+Bi(DsFi+D−s Hi))+

1
ξ
PiEiETi Pi+

ϑiQi ≤ 0, s ∈ I2m , i ∈ IN ,
2. Pi = Pj + ηi,j(Qj − Qi), i ∈ IN , j ∈ IN ,
3. θ1Q1 + θ2Q2 + · · · + θNQN ≥ 0,

and E(Pi, 1 + αξ) ∩ Ωi ⊂ L(Hi), i ∈ IN , then every trajectory of
the closed-loop system that starts from inside of ∩Ni=1(E(Pi, 1) ∩Ωi)
will remain inside of ∩Ni=1(E(Pi, 1+αξ)∩Ωi) for everyw ∈ W2

α , as
long as no sliding motion occurs or sliding motions only occur along
switching surfaces with the corresponding ηi,j ≥ 0. If the condition
E(Pi, 1+αξ)∩Ωi ⊂ L(Hi) is replacedwith E(Pi, αξ)∩Ωi ⊂ L(Hi),
then any trajectory starting from the origin will remain inside the
region ∩Ni=1(E(Pi, αξ) ∩Ωi) for every w ∈ W2

α as long as no sliding
motion occurs or sliding motions only occur along switching surfaces
with the corresponding ηi,j ≥ 0.
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