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a b s t r a c t

Input shaping is an efficient feedforward control technique which has motivated a great number of
contributions in recent years. Such a technique generates command signals with which manoeuvre
flexible structures without exciting their vibration modes. This paper presents a novel adaptive input
shaper based on an algebraic non-asymptotic identification. The main characteristic of the algebraic
identification in comparison with other identification methods is the short time needed to obtain the
system parameters without defining initial conditions. Thus, the proposed adaptive control can update
the input shaper during each manoeuvre when large uncertainties are present. Simulations illustrate the
performance of the proposed method.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Applications, such as those of the aerospace industry, have
motivated the use of very lightweight structures. Their advantages
may be an increase in the speed of the system without the need to
use large actuators, or a reduction in transport costs, among others.
However, when flexible structures are manoeuvred, undesirable
vibrations appear at the end of the trajectory. Thus, control systems
are included and designed to suppress such vibrations.
Input shaping (IS) is an efficient technique through which to

generate command signals that do not excite the flexible vibration
modes, whilst the final position is attained without steady-state
errors (Singer & Seering, 1990; Smith, 1958). In order to overcome
system uncertainties, robust, learning or adaptive input shaping
(AIS) approaches have been proposed in recent years. When large
variations in the system parameters are present, the use of a
Robust IS which is not combined with an adaptive or learning
technique might not be appropriate since the duration of the

I This paper was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Associate Editor Masayuki Fujita
under the direction of Editor Ian R. Petersen. This work has been supported by the
Spanish Government Research Programme with the project DPI2006-13593, and
the Consejería de Educación y Ciencia de la Junta de Comunidades de Castilla-La
Mancha and the European Social Fund with the project PCI-08-0135.
∗ Corresponding author. Tel.: +34 926 295 300x6205; fax: +34 926 29 53 61.
E-mail addresses: Emiliano.Pereira@uclm.es (E. Pereira),

JuanRamon.Trapero@uclm.es (J.R. Trapero), Ivan.Munoz@uclm.es (I.M. Díaz),
Vicente.Feliu@uclm.es (V. Feliu).

command signal could be excessive (Singhose, Derezinski, and
Singer (1996), Singhose, Porter, Tuttle,and Singer (1997), among
others). Furthermore, learning IS is not suitable for non-repetitive
manoeuvres (Park & Chang, 2001; Park, Chan, Park, & Lee, 2006).
AIS should therefore be used in these cases. The performance of AIS
depends on the identification procedure used. AIS may, therefore,
be developed in the frequency domain (Tzes & Yurkovich, 1993),
or in the time domain (Bodson, 1998; Cutforth & Pao, 2004; Rhim
& Book, 2001).
Tzes and Yurkovich (1993) use the time-varying transfer

function estimation (TTFE) approach to adjust the time intervals
of the input shaping impulses on-line. However, TTFE has a
high computational load and needs a high number of periods
to obtain the system parameters with sufficient precision. This
has motivated a great number of more recent approaches in AIS
based on time domain identification. Methods developed in the
time domain have several limitations such as: the estimation
must be carried out after each manoeuvre (Rhim & Book, 2001)
or the steady-state position is not guaranteed unless the shaper
is updated between manoeuvres (Bodson, 1998). The solution
proposed in Cutforth and Pao (2004) presents an AIS technique
based on the learning rule expounded in Park and Chang (2001).
This AIS can update the shaper during and after the manoeuvres.
However, initial conditionsmust be defined and the adaptation can
only take place during one part of the reference signal. Therefore,
the utilization of this method for the adaptation of the IS during
the manoeuvre when large system uncertainties occur is not
appropriate.
In this work, we propose a novel AIS that is able to update

the IS during the manoeuvre and is robust to large system
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uncertainties before eachmanoeuvre. In order to update the IS, the
new controller parameters are calculated from the identification
of the natural frequency and the damping ratio of the system.
Such an identification is carried out by a non-asymptotic algebraic
estimator developed in continuous time. This method is used for
fast constant parameter identification, state estimation in feedback
control systems and signal processing problems (see Fliess, Join,
and Sira-Ramírez (2008) and Fliess and Sira-Ramírez (2008)).
The main advantages of the algebraic estimator for the proposed
application are (see Chapter 3 of Fliess and Sira-Ramírez (2008)):
(a) it works on-line and it is able to achieve an estimation in a time
which is less than half the period of that of the vibrationmode; and
(b) it does not require any assumption concerning the statistical
distribution of the unstructured noise.
This paper presents an AIS for a damped flexible system with a

single dominant vibration mode. In Section 2, the dynamic model
assumed in this work is presented. In Section 3, the AIS control
scheme is explained. In Section 4, the deduction of an algebraic
estimator for a system with a single dominant vibration mode is
expounded. Section 5 includes two examples of applications with
which to illustrate the performance of this AIS approach. Finally,
some conclusions and suggestions for future works are given in
Section 6.

2. Systemmodel

The system model considered in this paper is a second order
system with the following transfer function

Y (s)
Uc(s)

=
Kfω2f

s2 + 2ξfωf s+ ω2f
, (1)

where Y (s) is the output, Uc(s) is the input, ξf is the damping
ratio, ωf is the natural frequency, and Kf is the gain of the system.
The assumed model can be used in the following situations: (1)
when the system response is essentially governed by one vibration
mode; (2) when the rigid-body motion and the other significant
vibration modes can be suppressed by a filter; and (3) when the
input and output of the model are chosen in order to isolate the
rigid-body motion and suppress the other significant vibration
modes.

3. Control strategy

The proposed AIS control scheme contains a robust IS, an
algebraic estimator with which to obtain ωf and ξf from uc(t)
and y(t) and a criterion to update the robust IS parameters (see
Fig. 1). A prior knowledge of the systemmodel is needed to design
the robust IS, whose time control can be minimized once the
uncertainty in ωf and ξf are known (Pao & Singhose, 1998). The
time control of any robust IS can be decreased by combining it
with the AIS technique. The decrement in time control achieved by
the proposed AIS is tested in this paper with a robust IS designed
through the use of the so-called derivative method of a zero
vibration (ZV), which can be written as

C(s) =
(
1+ ze−sD

1+ z

)p
, (2)

where z = e−ξf π/
√
1−ξ2f , D = π/ωf

√
1− ξ 2f , and p is a design

parameter which increases the controller robustness. Note that,
p = 1 corresponds to a ZV IS, p = 2 is equivalent to zero vibration
and derivative (ZVD) IS, and so on (Singer and Seering (1990), for
example).
In order to explain the control strategy, let us define the

unshaped input as u(t) = u1(t)+ u2(t)+ · · · + um(t), where each

Fig. 1. Control scheme of the AIS.

manoeuvre can be expressed as ui = (1(t − Ti−1)− 1(t − Ti))u(t).
The values of Ti−1 and Ti are the instants in time at which each
manoeuvre starts and finishes respectively, and 1(t) is a unit step.
The shaped command is calculated by uc(t) = uc1(t) + uc2(t) +
· · · + ucm(t), where each uci(t) is obtained with a different IS as
follows

Uci(s) = Ui(s)Ci(s) = Ui(s)
(
1+ zie−sDi

1+ zi

)pi
. (3)

During each manoeuvre, the proposed AIS: (a) fixes the value of
pi and zi in Ti−1, (b) estimates ωf and ξf during the manoeuvre,
(c) updates Di before Ti−1 + Di and (d) calculates zi+1 for the
next manoeuvre. The value of each pi depends on the expected
estimation error of ωf and ξf . As will be seen in Sections 4 and 5,
the performance of the estimation, which allows us to obtain ωf
and ξf before Ti−1 + Di with a sufficient precision, depends on the
SNR of the measured signals.

4. Algebraic identification

The objective of this section is to identify the parameters of
Eq. (1) which are needed to update each IS defined by Eq. (3).
The proposed estimator considers a constant value of Kf . Note
that this consideration can be assumed in many real applications,
such as single-link flexible manipulators. If one vibration mode is
considered and the input and the output of the estimator are the
joint and the tip angle respectively, Eq. (1) with a constant value
of Kf = 1 can be considered as a system model (see Feliu and
Ramos (2005), e.g.). The algebraic estimator with which to identify
the values of ωf and ξf is explained as follows. The following
manipulations, which are based on operational calculus (see
Mikusinski and Boehme (1987), e.g.), describe how the algebraic
method works.

4.1. Noise free case

In order to make the deduction of the estimator equations
more understandable, we first assume that signals are noise free.
Consider Eq. (1) when expressed as a second order differential
equation

ÿ(t)+ 2ξfωf ẏ(t)+ ω2f y(t) = Kfω
2
f uc(t). (4)

The Laplace Transform of (4) is given by

s2Y (s)− sy(0)− ẏ(0)+ α1(sY (s)− y(0))
+α2(Y (s)− KfUc(s)) = 0. (5)

It is quite straightforward to verify that

ξf ,est =
α1

2
√
α2
, ωf ,est = +

√
α2, (6)

where ωf ,est and ξf ,est are the estimated values of ωf and ξf .
According to Fliess, Mboup, Mounier, and Sira-Ramírez (2003),
this system is weakly identifiable since the unknown parameters
can be made available through algebraic manipulations. Most
estimation algorithms encounter the problem of setting the values
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