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a b s t r a c t

The subspace identificationmethods have proved to be a powerful tool, which can further benefit from the
prior information incorporation algorithm proposed in this note. In the industrial environment, there is
often some knowledge about the identified system (known static gains, dominant time constants, low
frequency character, etc.), which can be used to improve model quality and its compliance with first
principles. The proposed algorithm has two stages. The first one is similar to the subspace methods as it
uses their interpretation as an optimization problem of finding parameters of an optimalmulti-step linear
predictor for the experimental data. This problem is reformulated in the Bayesian framework allowing
prior information incorporation in the form of themean value and the covariance of the impulse response,
which is shown to be useful for the incorporation of several prior information types. The second stagewith
state spacemodel realization from the posterior impulse response estimate is different from the standard
subspacemethods as it is based on the structuredweighted lower rank approximation, which is necessary
to preserve the prior information incorporated in the first stage.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The Subspace State Space System IDentification (4SID) has
shown its suitability for industrial applications (Favoreel, De
Moor, & Van Overschee, 2000), mainly due to its numerical
robustness and the ability to identify MIMO (Multiple Inputs
Multiple Outputs) systems with the same complexity as that for
SISO (Single Input Single Output) systems without a need for
extensive structural parameterization. However, it is quite usual
that input/output data obtained from identification experiments in
the industrial environment do not always have sufficient quality to
give a good model by themselves. This may be caused by the fact
that process excitation during identification experiments is limited
by economical and safety reasons, which often results in data
without proper excitation and with strong noise contamination.
The black-box approach as in 4SID, relying only on experimental
data, may provide biased models in such cases. In practical
applications there is often strong prior information (PI) about the
system, which can be exploited by the identification algorithm to
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improve the quality of the identified model. Such information can
be approximate knowledge of time constants, known static gains,
an input/output stability, step response smoothness, etc. It can be
obtained from process operator experience, first principles model,
by the analysis of process history data, etc. Previous efforts in 4SID
incorporating PI were directed to specific cases (Chen, Van Huffel,
Van den Boom, & Van den Bosch, 1997; Laudadio et al., 2004). A
more general and systematic solution is still unavailable. In order
to obtain a solution, the projections in 4SID have to be treated in a
more general way. The proposed algorithm uses the interpretation
of subspace identification as an optimization problem of finding
a model as an optimal multi-step predictor (Van Overschee & De
Moor, 1996) for the experimental data. Further, the problem is
reformulated in the Bayesian framework allowing a combination
of available PI with information from the experimental data. The
PI is included by a convenient choice of the mean value and the
covariance of a prior impulse response estimate. A straightforward
realization of a state space model from a posterior impulse
response estimate by Kung’s algorithm (Kung, 1978) would lead to
the loss of the included PI. To retain it, the realization is found using
Hankel structured weighted lower rank approximation (SWLRA).

2. Notation and overview

In this paper a state space model of a stochastic system in the
innovation form (Ljung, 1987) is considered

xk+1 = Axk + Buk + Kek,
yk = Cxk + Duk + ek,

(1)
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where uk ∈ Rm is the input, xk ∈ Rn is the state, yk ∈ Rl is
the output, K is the steady state Kalman gain and ek ∈ Rl is an
unknown innovation sequence with E [ek] = 0 and the covariance
matrix E

[
ekeTk

]
= Re, E

[
epeTq

]
= 0 for p 6= q.

2.1. Signal related matrices

In 4SID algorithms, all signals are arranged in Hankel matrices.
Assume known input/output data set

{
uN−10 , yN−10

}
1arranged into

block Hankel matrices with i and h block rows and j columns

(
Up
Uf

)
,



u0 u1 . . . uj−1
u1 u2 . . . uj
...

...
. . .

...
ui−1 ui . . . ui+j−2
ui ui+1 . . . ui+j−1
ui+1 ui+2 . . . ui+j
...

...
. . .

...
ui+h−1 ui+h . . . uN−1


,

whereUp ∈ Rim×j is thematrix denoted as the past inputs andUf ∈
Rhm×j is the matrix denoted as the future inputs. The coefficients
i and h are selected larger than the upper bound of the expected
system order n and j = N − i − h + 1. Identifiability results
of Willems, Rapisarda, Markovsky, and De Moor (2008) require
persistently exciting input of order i + h + n. For the outputs
yk and noises ek similar Hankel matrices Yp, Yf and Ep, Ef can
be constructed. A combination of Up and Yp is denoted as Wp ,

(Y Tp UTp )
T. The system state sequence is also arranged in a matrix

form

Xp ,
(
x0 x1 . . . xj−1

)
, Xf ,

(
xi xi+1 . . . xi+j−1

)
.

2.2. Parameter related matrices

The extended observability matrix Γk is an extension of the
observability matrix for a number of block rows higher than or
equal to the system order n

Γk ,
(
CT (CA)T . . . (CAk−1)T

)T
∈ Rkl×n. (2)

Similarly, the extended controllability matrix∆k

∆k ,
(
B AB . . . Ak−1B

)
∈ Rn×km. (3)

The block Toeplitz matrix Hdk composed from the deterministic
impulse response sequence

{
gk−10

}

Hdk ,


g0 0 . . . 0
g1 g0 . . . 0
...

...
. . .

...
gk−1 gk−2 . . . g0

 ∈ Rkl×km. (4)

3. 4SID as multi-step optimal predictor

This section recalls that an oblique projection in 4SID can be
viewed as a minimization result of the multi-step prediction error

1 Notation xt2t1 stands for ( xt1 . . . xt2 ).

criterion (Van Overschee & De Moor, 1996). Assume a bank of
h linear predictors for 1 to h step predictions based on history
input/outputwindowof length i and future inputwindowof length
h. The kth predictor with parameters θ (k) is (Ljung & McKelvey,
1996)

ŷ (t + k|t) =
(
ytt−i+1 utt−i+1 | u

t+h
t+1

)
θ (k), k = 1, . . . , h.

The predictions on the whole data set can be written using Hankel
notation as

Ŷf =
(
Lw Hdh

) (Wp
Uf

)
, (5)

where ( Lw Hdh ) = ( θ (1) . . . θ (h) )T. Optimizing parame-
ters for the minimal overall quadratic error

min
Lw ,Hdh

∥∥Yf − Ŷf ∥∥2F = min
Lw ,Hdh

∥∥∥∥Yf − (Lw Hdh
) (Wp
Uf

)∥∥∥∥2
F
, (6)

where ‖•‖F is Frobenius norm and denoting D = (W Tp UTf )
T,

the optimal Lw and Hdh are(
Lw Hdh

)
= YfDT (DDT)Ď . (7)

Using the previous result, the estimated zero-input initial state
response LwWp can be computed as

LwWp = YfDT
[(

DDT)Ď]( Ir×r
0hm×r

)
Wp, r = i(l+m),

which is an expression for the oblique projection

LwWp = Yf /
Uf
Wp, (8)

showing the equivalence between the oblique projection in 4SID
and estimation of parameters of an optimal multi-step predictor.

3.1. Enforcing causality and uniqueness of parameters

The oblique projection (7) does not ensure proper parameter
structure, i.e. Hdh should have zeros above the main diagonal and
Toeplitz structure. This leads to predictor non-causality and over-
parameterization. A solution was proposed in Peternell, Cherrer,
and Deistler (1996). It uses a formula for the vectorization of a
matrix product on (5)

vec
(̂
Yf
)
=
(
(W Tp UTf )⊗ Ihl×hl

)
vec(( Lw Hdh ))

and the fact that it is possible to find a certain matrix N such that

vec
(
(Lw Hdh )

)
= N

(
lw
g

)
,

lw = vec (Lw) ,
g = vec

(
(g0 . . . gh−1)

)
.

A set of equations equivalent to (5) with the enforced Hdh structure
and reduced number of parameters is then

vec
(̂
Yf
)︸ ︷︷ ︸

y

=
(
(W Tp UTf )⊗ Ihl×hl

)
N︸ ︷︷ ︸

Z

(
lw
g

)
︸ ︷︷ ︸
θ

. (9)
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