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Abstract

This work investigates how stochastic sampling jitter noise affects the result of system identification, and proposes a modification of known
approaches to mitigate the effects of sampling jitter, when the jitter is unknown and not directly measurable. By just assuming conventional
additive measurement noise, the analysis shows that the identified model will get a bias in the transfer function amplitude that increases for
higher frequencies. A frequency domain approach with a continuous-time model allows an analysis framework for sampling jitter noise. The
bias and covariance in the frequency domain model are derived. These are used in bias compensated (weighted) least squares algorithms, and by
asymptotic arguments this leads to a maximum likelihood algorithm. Continuous-time output error models are used for numerical illustrations.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Consider a deterministic signal model s(t; �), which may
depend on an observed or known input. This work studies the
problem of identifying the unknown parameter vector �, when
the discrete time observations yk requested at time t = kT (T
denotes the sampling interval) are subject both to the usual
additive measurement noise and also stochastic unmeasurable
jitter noise �k as part of the sampling process. That is, the
observation includes the term s(kT + �k; �), which becomes a
stochastic variable.

This type of non-uniform sampling may occur when uniform
sampling is requested, but the sensor for one or several rea-
sons cannot measure exactly at that time instant, and the true
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sampling time is either unmeasurable, or the communication
protocol does not allow to transport time stamps to each mea-
surement. Sampling jitter may also occur due to imperfect
hold circuits, synchronization or other hardware problems. Not
even high-performance digital oscilloscopes are free from sam-
pling jitter as demonstrated in Verbeyst, Rolain, Schoukens, and
Pintelon (2006). There, a dedicated system identification exper-
iment is developed to estimate jitter effects. The result, when a
sampling time of 1.22 ps is used, is that a commercial sampling
oscilloscope has a sampling jitter standard deviation of around
1 ps, that is ≈ 80% of the sampling time.

The general problem of non-uniform sampling is extensively
treated in literature, see Bilinskis and Mikelsons (1992) and
Marvasti (2001). In most publications, the sampling times are
known, and the problem is to analyze leakage and alias effects.
Another twist is to design sampling times to minimize aliasing.
For stochastic sampling jitter, the distribution of s(t +�k) is de-
rived in Eng and Gustafsson (2005, 2006) and Souders, Flach,
Hagwood, and Yang (1990). These results will be used and ex-
tended in this paper. In the context of jitter estimation, the sam-
pling oscilloscope has been extensively studied, the methods
include averaging over several measurements, as in Verspecht
(1995), and Taylor series expansions, in Verbeyst et al. (2006),
in order to estimate the variance of the jitter and use this to
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compensate for the jitter effects. In this paper, we consider
a model-based approach, where the main goal is to find an
underlying continuous-time system, and the jitter density can
be seen as known or given in the estimation as a by-product.

The basic idea is as follows. The frequency domain ap-
proach is to minimize the distance between the measurement
and signal model discrete time Fourier transforms (DTFT),
‖DTFT(yk)−DTFT(s(kT +�k; �))‖ with respect to the param-
eters � in some suitable norm. This frequency domain approach
is standard in system identification (Ljung, 1999; Pintelon &
Schoukens, 2001). A continuous-time model for s(t) is used to
be able to analyze the sampling jitter effects. The analysis shows
that by neglecting the jitter, the Fourier transform (FT) of the
signal model will suffer from an amplitude bias in |FT(s(t))|=
|S(f )| that increases for higher frequencies. Further, the larger
jitter noise variance, the larger bias. The remedy is to com-
pensate for the bias, and the closed form solution involves
a frequency weighting in the norm, ‖DTFT(yk) − ∫

S(�; �)

w(f, �) d�‖.
The outline is as follows. The system identification problem

and main notation are presented in Section 2. In Section 3, the
bias effect of sampling jitter noise on the frequency transform
is derived, and the bias compensated least squares (LS) estima-
tor is proposed. Section 4 derives the second order properties
of the frequency transform due to jitter noise, and a weighted
LS algorithm as well as an asymptotic maximum likelihood
(ML) estimator are presented. Section 5 illustrates these algo-
rithms for several simulated numerical examples. The work is
concluded in Section 6.

2. Problem formulation

The general problem formulation looks as follows. The sen-
sor is requested to sample uniformly, but delivers discrete time
measurements corrupted by amplitude noise and sampling time
jitter according to

yk = s(kT + �k; �) + v(kT + �k; �). (1a)

The signal term, noise term, and jitter distribution can all be
dependent on the unknown parameter � and given by

s(t; �) = (g� � u)(t), (1b)

v(t; �) = (h� � e)(t), (1c)

�k ∈ p�(�). (1d)

Here u(t) is a known input, e(t) is white noise with known
characteristics, g�(t) denotes the system impulse response
and h�(t) the noise dynamics. The jitter sampling noise is a
sequence of independent stochastic variables with probabil-
ity density function (pdf) p�(�). Both the signal, noise and
sampling models can be parameterized in the unknown pa-
rameter vector �. We will primarily focus on continuous-time
systems here.

The system identification problems under consideration
can be stated as estimating the parameter � in a model

structure

MOE : g�(t), h�(t) = �(t), p�(�) = p(�), (2a)

MBJ : g�(t), h�(t), p�(�) = p(�), (2b)

MJOE : g�(t), h�(t) = �(t), p�(�), (2c)

MJBJ : g�(t), h�(t), p�(�). (2d)

Here, OE denotes the output error and BJ the Box–Jenkins
model structure, respectively, where the jitter distribution is
known. JOE and JBJ are the corresponding problems where
also the jitter noise distribution is parameterized.

Using previous knowledge about the sampling jitter effect
in the frequency domain indicates that the frequency domain
approach (see for example Ljung, 1999; Pintelon & Schoukens,
2001) is suitable for identification in this case. Denote the FT
of the measurements and signal model, respectively,

Yd(f ) =
N−1∑
k=0

yke−i2�f kT , (3)

S(f ; �) = G(f ; �)U(f ). (4)

The general problem formulation is now to minimize the dis-
tance between the measurement, Yd(f ), and model, S(f ; �), in
the frequency domain.

�̂ = arg min
�

∫ ∞

−∞
�(f ; �)|Yd(f ) − S(f ; �)|2 df , (5)

for some suitable weighting function, �. Normally, the weights,
�(f ; �) are given by the inverse noise spectrum (Ljung, 1999;
Pintelon & Schoukens, 2001). We will show a few other exam-
ples later.

Given a continuous-time signal model Sc(f ), a well known
property of the FT gives that the discrete FT, Sd(f ), becomes

Sd(f ) =
∫ ∞

−∞
Sc(�)dN(f − �) d�. (6)

Here dN(f ) is the normalized Dirichlet kernel (also known as
the aliased sinc function), defined as

dN(f ) = e−i�f (N−1)T sin(�f NT )

sin(�f T )
. (7)

The local behavior of the normalized Dirichlet kernel (see
Fig. 1) describes the effects of leakage and its 1/T periodicity
describes aliasing. For the regular case, with no sampling jitter,
the correct way is to compare Yd(f ) with Sd(f ; �), and using
the unweighted LS norm in (5) over a discrete set of frequen-
cies yields the parameter vector � as

�̂LS= arg min
�

∑
f

∣∣∣∣Yd(f )−
∫ ∞

−∞
Sc(�; �)dN(f −�) d�

∣∣∣∣
2

. (8)
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