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Abstract

An LMI approach is proposed for the design of robust H∞ observers for a class of Lipschitz nonlinear systems. Two type of systems
are considered, Lipschitz nonlinear discrete-time systems and Lipschitz nonlinear sampled-data systems with Euler approximate discrete-time
models. Observer convergence when the exact discrete-time model of the system is available is shown. Then, practical convergence of the
proposed observer is proved using the Euler approximate discrete-time model. As an additional feature, maximizing the admissible Lipschitz
constant, the solution of the proposed LMI optimization problem guaranties robustness against some nonlinear uncertainties. The robust H∞
observer synthesis problem is solved for both cases. The maximum disturbance attenuation level is achieved through LMI optimization.
� 2007 Published by Elsevier Ltd.
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1. Introduction

Design of discrete-time nonlinear observers has been the
subject of significant attention in recent years. See for ex-
ample Califano, Monaco, and Normand-Cyrot (2003), Xiao,
Kazantzis, Kravaris, and Krener (2003), Kazantzis and Kravaris
(2001) and Wang and Unbehauen (2000) as well as the sampled
data nonlinear observers of Moraal and Grizzle (1995), Biyik
and Arcak (2006) and Laila and Astolfi (2006). The study of
the nonlinear discrete-time observers is important at least for
two reasons. First, most continuous-time control system de-
signs are implemented digitally. Given that in most practi-
cal cases it is impossible to measure every state variable in
real time, these controllers require the reconstruction of the
states of the discrete-time model of the true continuous-time
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plant. Second, there are systems which are inherently discrete-
time and do not originate from discretization of a continuous-
time plant. Of those, discrete-time observers of continuous-time
systems are particularly challenging. The reason is that exact
discretization of a continuous-time nonlinear model is usually
not possible to obtain. Approximate discrete-time models, on
the other hand, are affected by the consequent approximation
error. In this paper, we address both problems. First, we con-
sider a class of nonlinear discrete-time systems with exact
model. A nonlinear H∞ observer design algorithm is proposed
for these systems based on an LMI approach. Then, the non-
linear sampled data system, sampled using a zero-order hold
device, with Euler approximate model is considered. The Euler
approximation is important because not only it is easy to de-
rive but also it maintains the structure of the original nonlinear
model. We show that by appropriate selection of one of the
parameters in our proposed LMIs (the only design parameter
in our algorithm), the practical convergence of the observer via
Euler approximation is guaranteed as well as the robust H∞
cost. Our approach is based on the recent results of Arcak and
Nešić (2004). See Assoudi, Yaagoubi, and Hammouri (2002)
and Busawon, Saif, and Leon-Morales (1999) for other ap-
proaches. We emphasize that while the algorithms in Assoudi
et al. (2002) and Busawon et al. (1999) are specifically designed
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for Euler discretization, our proposed algorithm can be applied
either to the nominal exact discrete-time model or to its Euler
approximation.

The LMI based observer design for uncertain discrete-time
systems has been addressed in several works e.g. Xu (2002)
and Lu and Ho (2004). In all these studies, the proposed LMIs
are nonlinear in the Lipschitz constant and thus it cannot be
considered as one of the LMI variables. In the algorithm pro-
posed here, first the problem is addressed in the general case,
then, having a bound on the Lipschitz constant, the LMIs be-
come linear in the Lipschitz constant and we can take advan-
tage of this feature to solve an optimization problem over it.
Provided that the optimal solution is larger than the actual
Lipschitz constant of the system in hand, we show that the
redundancy achieved can guarantee robustness against some
nonlinear uncertainty in the original continuous-time model for
both exact and Euler approximate discretizations. Therefore,
unlike the aforementioned LMI approaches in which the un-
certainty is in the linear part of the model, here the uncertainty
can be in the nonlinear part as well as the whole model due
to approximate discretization. The paper is organized as fol-
lows: In Section 2, an observer design method for a class of
nonlinear discrete-time systems is introduced. In Section 3 the
practical convergence of the proposed observer via the Euler
approximate models is shown. In Section 4, the results of the
two previous sections will extend into the H∞ context followed
by an illustrative example showing satisfactory performance of
our algorithm.

2. Observer design for nonlinear discrete-time systems

We consider the following system:

xk+1 = Adxk + F(xk, uk), (1)

yk = Cdxk , (2)

where x ∈ Rn, u ∈ Rm, y ∈ Rp and F(xk, uk) contains non-
linearities of second order or higher. The above system can be
either an inherently discrete-time system or the exact discretiza-
tion of a continuous-time system. We assume that F(xk, uk) is
locally Lipschitz with respect to x in a region D, uniformly in
u, i.e. ∀ x1k, x2k ∈ D:

‖F(x1, u
∗) − F(x2, u

∗)‖��d‖x1 − x2‖, (3)

where ‖.‖ is the induced 2-norm, u∗ is any admissible control
sequence and �d > 0 is called the Lipschitz constant. If the
nonlinear function F satisfies the Lipschitz continuity condition
globally in Rn, then all the results in this and the ensuing
sections will be valid globally. The proposed observer is in the
following form:

x̂k+1 = Adx̂k + F(x̂, u) + L(yk − Cdx̂k). (4)

Defining the observer error as ek�xk − x̂k , we have

ek+1 = (Ad − LCd)ek + F(xk, uk) − F(x̂k, uk). (5)

Our goal in this section is two-fold: (i) In the first place, we
want to find an observer gain, L, such that the observer error

dynamics is asymptotically stable. (ii) We want to maximize
�d , the allowable Lipschitz constant of the nonlinear system.
The following theorem addresses the first goal.

Theorem 1. Consider the system (1)–(2) with given Lipschitz
constant �d . The observer error dynamics (5) is (globally)
asymptotically stable if there exist scalar � > 0, fixed matrix
Q > 0 and matrices P > 0 and G such that the following set of
LMIs has a solution:

��
[

P − Q − �I AT
dP − CT

d GT

PAd − GCd P

]
> 0, (6)[

�1I P

P �1I

]
> 0, (7)

where

�1 =
−�max(Q) +

√
�2

max(Q) + 1

�2
d

�2
min(Q)

�d + 2
. (8)

P, G, and � are the LMI variables and Q is a design parameter
to be chosen. Once the problem is solved: L = P −1G.

Proof. Consider the Lyapunov function candidate as Vk =
eT
k P ek , then

�V = Vk+1 − Vk = eT
k (Ad − LCd)TP(Ad − LCd)ek

+ 2eT
k (Ad − LCd)TP(Fk − F̂k)

+ (Fk − F̂k)
TP(Fk − F̂k) − eT

k P ek , (9)

where we use notations Fk�F(xk, uk), F̂k�F(x̂k, uk). Sup-
pose ∃P, Q > 0 such that the following discrete-time Lyapunov
equation has a solution:

(Ad − LCd)TP(Ad − LCd) − P = −Q. (10)

Then (9) becomes

�V = − eT
k Qek + 2eT

k (Ad − LCd)TP(Fk − F̂k)

+ (Fk − F̂k)
TP(Fk − F̂k). (11)

Using Rayleigh and Schwarz inequalities, we have

‖eT
k Qek‖��min(Q)‖ek‖2, (12)

‖2eT
k (Ad − LCd)TP(Fk − F̂k)‖

�‖2eT
k P (Fk − F̂k)‖ · · · ‖Ad − LCd‖

�2�d�max(P )‖ek‖2‖Ad − LCd‖
= 2�d�max(P )‖ek‖2�̄(Ad − LCd), (13)

‖(Fk − F̂k)
TP(Fk − F̂k)‖��max(P )‖(Fk − F̂k)‖2

��2
d�max(P )‖ek‖2. (14)

So for �V < 0 it is sufficient to have

−�min(Q) + �max(P )[2�d �̄(Ad − LCd) + �2
d ] < 0. (15)

Condition (15) along with (10) are sufficient conditions
for asymptotic stability. We now endeavor to convert these
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