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Abstract

Although correspondence between the poles of a continuous-time and sampled-data system with a piecewise constant input is simple and
desirable from the stability viewpoint, the relationship between zeros is intricate. Inversion of a sampled-data system is mostly unstable
irrespective of the stability of the continuous-time counterpart. This makes it difficult to apply inversion-based control techniques such as perfect
tracking, transient response shaping or iterative learning control to sampled-data systems. Although recently developed noncausal inversion
techniques help us to circumvent unboundedness of the inversion caused by unstable zeros, whether the inversion of sampled-data systems
approximates the continuous-time counterpart or not as the sample period is shortened is still to be determined. This article gives a positive
conclusion to this problem.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent times, control systems have typically been installed
in digital devices that include samplers and zero-order holds,
which convert continuous-time signals into discrete-time sig-
nals and vice versa. A zero-order hold generates piecewise
constant functions that can approximate any uniformly con-
tinuous function u(t) defined on the infinite time horizon, i.e.
‖u(�t/���) − u(t)‖∞ → 0 as the sample period � → 0 where
‖x(t)‖∞ = sup{|x(t)|; t ∈ (−∞, +∞)} and �t/�� denotes the
maximum integer that does not exceed t/�. This implies that
‖ ∫ +∞

−∞ g(t − �)u(��/���) d� − ∫ +∞
−∞ g(t − �)u(�) d�‖∞ →

0 for any stable linear system g, i.e. the output of stable
continuous-time systems with a piecewise constant input
u(�t/���) approximates the output of the same systems with a
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continuous input u(t) as the sample period is shortened. This
fact encourages us to replace analog controllers with digital
controllers with a sufficiently small sample time. In contrast
to the earlier mentioned convenient properties, it is recognized
that there is no simple correspondence between inversion of
the system with continuous input and piecewise constant input.
This fact is highlighted by investigations from the viewpoint
of transfer functions. Consider a linear causal system with an
impulse response g(t). Then, the transfer function is G(s) =
L[∫ +∞

−∞ g(t − �)u(�) d�]/L[u(t)] where L denotes the one-
sided Laplace transform. Assume that the transfer function is
expressed as

G(s) = K(s − �1)(s − �2) · · · (s − �m)

(s − p1)(s − p2) · · · (s − pn)
(1)

or G(s) = c(sI − A)−1b, where (A, b, c) is a state space
representation. Then, the discrete-time transfer function
of the system with piecewise constant inputs u(��/���)
on the sample time t = k� (k = 0, ±1, . . .) is H�(z) =
Z[∫ +∞

−∞ g(k� − �)u(��/���) d�]/Z[u(k�)]; equivalently,

H�(z) = Z[L−1[G(s)L[u(�t/���)]](k�)]/Z[u(k�)], which
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Table 1
Zeros of Euler–Frobenius polynomial Bn−m(z)

n − m Zeros

2 −1
3 −2 − √

3, 1/(−2 − √
3)

4 −5 − 2
√

6, −1, 1/(−5 − 2
√

6)

5 �51, �52, 1/�52, 1/�51 (�51 ≈ −23, �52 ≈ −2.3)
6 �61, �62, −1, 1/�62, 1/�61 (�61 ≈ −51, �62 ≈ −4.5)
.
.
.

.

.

.

odd �i−11, . . . , �i−1(i−2)/2, 1/�i−1(i−2)/2, . . . , 1/�i−11

i − 1 (�i−11 < · · · < �i−1(i−2)/2 < − 1)
even �i1, . . . , �i(i−2)/2, −1, 1/�i(i−2)/2, . . . , 1/�i1

i (�i1 < · · · < �i(i−2)/2 < − 1)

is expressed as

H�(z) = cb�{z − q1(�)} · · · {z − qn−1(�)}
{z − exp(p1�)} · · · {z − exp(pn�)} (2)

or H�(z) = c(zI − A�)
−1b�, where Z is the one-sided

z-transform, A� = exp(A�) and b� = ∫ �
0 exp(At)b dt .

Although correspondence between the poles of G(s) and
H�(z) is simple and desirable from the stability viewpoint, the
relationship between zeros is intricate. It is known that the ze-
ros of H�(z) have the following asymptotic properties in terms
of the sample period � (Åström, Hagander, & Sternby, 1984;
Hagiwara & Araki, 1993): qi(�)=1+�i�+O(�2)(i=1, . . . , m)
and qi(�) → zeros of Bn−m(z) (i=m+1, . . . , n−1) as � → 0,
where Bn−m(z) is the Euler–Frobenius polynomial, the zeros
of which are located on the negative real axis symmetrically
with respect to −1 (Table 1) (Dubeau & Savoie, 1995; Weller,
Moran, Ninness, & Pollington, 2001). This implies that inver-
sion of the discrete-time system 1/H�(z) with a small sample
period is mostly unstable even if the continuous-time counter-
part 1/G(s) is stable.

On the other hand, system inversion plays crucial roles in
many control applications such as perfect tracking, transient
response shaping, disturbance attenuation, and noise cancel-
lation. The aforementioned fact makes it difficult to apply
inversion-based control techniques developed for continuous-
time systems to sampled-data systems with piecewise constant
inputs. For example, consider shaping a transient response of
G(s). Then, as long as the zeros of G(s) are stable, one can
employ M(s)/G(s) as a prefilter of G(s), where M(s) is a
model that has a desired response. However, it is not necessarily
possible to apply a corresponding approach directly to the case
of piecewise constant inputs because the discrete-time prefilter
N�(z)/H�(z) is mostly unstable; here, N�(z) is the discrete-time
counterpart of M(s). Nonetheless, one can avoid unbounded-
ness of the prefilter by introducing a discrete-time version of
the so-called stable inversion technique, which is a method to
apply anticausal convolution to antistable parts of the inverse
system and generate bounded outputs (Devasia, Chen, & Paden,
1996; Hunt & Meyer, 1997). Still, even though one circumvents
the unboundedness due to unstable zeros of H�(z), whether
the discrete-time prefilter N�(z)/H�(z) can be substituted for

the continuous-time prefilter M(s)/G(s) is still a question.
Recall that H�(z) approximates G(s) for uniformly continuous
functions u(t). In such a case, whether 1/H�(z) approximates
1/G(s) or not must be determined. In this article, the author
presents an affirmative conclusion to this problem.

This article is organized as follows: Section 2 defines non-
causal stable inversion with the two-sided Laplace transform
and z-transform and formulates the main problem with illus-
trative numerical examples; Section 3 demonstrates the main
results on an approximation in the noncausal framework; and
Section 4 concludes the work.

2. Noncausal inversion and formulation of the
approximation problem

Since feedback control is essentially causal, the one-sided
Laplace transforms and the one-sided z-transforms have been
widely used as mathematical tools to analyze and design lin-
ear feedback controllers. In this framework, transfer functions
with unstable poles that are located in the right half plane for
continuous-time systems or outside the unit circle for discrete-
time systems correspond to diverging signals. This implies that
the inverse of systems with unstable zeros is of no practical
use. However, feedforward control is not necessarily causal
in applications such as perfect tracking, transient response
shaping or iterative learning control. Noncausal feedforward
control has been proposed to achieve better tracking than that
given by causal controllers (Hoover, Longchamp, & Rosenthal,
2004; Hunt & Meyer, 1997; Kinoshita, Sogo, & Adachi, 2002;
Kojima & Ishijima, 2003). It is known that noncausality
enlarges the application scope of iterative learning control
(Markusson, Hjalmarsson, & Norrlöf, 2001; Sun & Wang,
2001; Sun, Wang, & Wang, 2004). In this work, the author
introduces the two-sided Laplace transform and the z-transform
as mathematical tools to analyze noncausal inversion.

The two-sided Laplace transform of a function f (t)

where t ∈ (−∞, +∞) is defined as L[f (t)](s) = F(s) =∫ +∞
−∞ e−stf (t) dt , which is an analytic function of s ∈ C in

the vertical strip area �1 < Re(s) < �2 (Poularikas, 2000). Let
� be a real number satisfying �1 < � < �2. The inverse Laplace
transform is then expressed by

L−1[F(s)](t)

= f (t) = 1

2�j

∫ �+j∞

�−j∞
estF (s) ds

=
{∑

Re(pn)<� Res(estF (s), pn), t �0,∑
Re(pm)>� Res(−estF (s), pm), t < 0,

(3)

where {pn} and {pm} are the sets of poles of F(s). For example,
consider a bounded function f (t) defined as f (t) = e−t for
t �0 and f (t) = e2t for t < 0. Then, we have F(s) = 1/(s +
1) + 1/(2 − s), which is analytic on {s; −1 < Re(s) < 2}.

The two-sided z-transform of a discrete-time function
h(k) where k ∈ Z is defined as Z[h(k)](z) = H(z) =∑+∞

k=−∞ h(k)z−k , which is an analytic function of z ∈ C in
the annular domain r0 < |z| < R0. Let � be a positive real
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