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Abstract

L2 and L1 optimal linear time-invariant (LTI) approximation of discrete-time nonlinear systems, such as nonlinear finite impulse response
(NFIR) systems, is studied via a signal distribution theory motivated approach. The use of a signal distribution theoretic framework facilitates the
formulation and analysis of many system modelling problems, including system identification problems. Specifically, a very explicit solution to
the L2 (least squares) LTI approximation problem for NFIR systems is obtained in this manner. Furthermore, the L1 (least absolute deviations)
LTI approximation problem for NFIR systems is essentially reduced to a linear programming problem. Active LTI modelling emphasizes model
quality based on the intended use of the models in linear controller design. Robust stability and LTI approximation concepts are studied here in
a nonlinear systems context. Numerical examples are given illustrating the performance of the least squares (LS) method and the least absolute
deviations (LAD) method with LTI models against nonlinear unmodelled dynamics.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper provides several applications of signal distribu-
tion theory to active linear modelling of nonlinear systems (with
the terminology active modelling, in contrast to passive mod-
elling, it is emphasized that we have in mind an intended use
of the linear models: here in linear controller design for non-
linear systems). Linear time-invariant (LTI) models are widely
used in control applications although real plants are typically
at least mildly nonlinear. In the present work we solve, among
other things, an L2 LTI approximation problem for single-input,
single-output (SISO), discrete-time, nonlinear finite impulse re-
sponse (NFIR) systems. Furthermore, we solve also an analo-
gous L1 LTI approximation problem for NFIR systems.

The theory of uniform distribution of sequences (Kuipers
and Niederreiter, 1974) has its origin in some important work
of Weyl (Körner, 1988; Kuipers and Niederreiter, 1974). This
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theory provides a realistic nonstochastic signal analysis frame-
work. It has been used in the analysis of pseudorandom number
generators and in numerical integration (Knuth, 1998; Nieder-
reiter, 1992), to mention two important application areas, see
also Grabner et al. (1999). The generalized harmonic analysis
(GHA) of Wiener (1927, 1930) is another realistic nonstochastic
signal analysis framework (Ljung, 2001; Mäkilä et al., 1998).
However, the scope of GHA as a signal analysis tool is much
more limited than the theory of distributions. In Mäkilä (2003),
Mäkilä and Partington (2004) distribution concepts are used in
the analysis of nonlinear approximation of systems.

The problem of optimal LTI modelling of nonlinear systems
has received considerable attention in recent years, see for ex-
ample Sastry (1999), Ljung (2001) and Mäkilä and Partington
(2003). One reason for this interest is the desire to understand
the impact of nonlinear distortions on the performance of stan-
dard LTI model estimation methods (Enqvist and Ljung, 2002,
2003; Ljung, 2001; Pintelon and Schoukens, 2001; Schoukens
et al., 2001). Furthermore, it is important to understand the de-
sign of LTI controllers based on LTI approximations of nonlin-
ear systems, see for example Zames (1966), Sastry (1999) and
Mäkilä and Partington (2003).
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Our solution to the L2 LTI approximation problem for NFIR
systems is based on earlier work in Mäkilä (2004), Mäkilä
and Partington (2004). The use of signal distribution theory
allows us to provide a very explicit solution to the approxi-
mation problem for an important class of inputs. The L1 LTI
approximation problem for NFIR systems is here shown to be
equivalent to certain classical continuous and discrete L1 ap-
proximation problems (Pinkus, 1989; Powell, 1981). Note that
the L1 LTI approximation problem is not studied in Mäkilä
(2004), Mäkilä and Partington (2004). Our results are related
to asymptotic analysis of LTI model identification via least
squares (LS) and least absolute deviations (LAD) methods for
NFIR systems. For the LS approach with LTI models such
analysis is presented for NFIR systems in the very interest-
ing thesis Enqvist (2003) using stochastic techniques, see also
Enqvist and Ljung (2005).

Our aim is to obtain results that allow the comparison of
LS and LAD techniques. The LS case allows a more detailed
analysis and thus this case is our main object of study here.
Connections to correlation and LS techniques for identification
of linear models are also established. We are especially inter-
ested in understanding how LTI modelling techniques react to
unmodelled nonlinear dynamics when the LTI models are used
in LTI controller design. For the LS case some pertinent results
are also described in Mäkilä (2004, 2005). The L2 LTI approx-
imation problem is analysed for a class of nonlinear state space
(NSS) systems using for the first time a sample limit result in
Mäkilä and Partington (2004).

To understand the performance of LTI models in LTI con-
troller design for nonlinear systems, it is essential to analyse
when LTI controllers can perform well in a nonlinear context.
The concept of nearly linear system is interesting in this respect
(Mäkilä, 2005). This concept demonstrates that in the nonlinear
case, it is useful to consider a generalization of the concept of
best LTI model of a nonlinear system (Mäkilä and Partington,
2003). We discuss this generalization in some detail, via the
new concept of nonlinear companion, and provide associated
robust stability analysis. This analysis indicates that it would
be desirable to generalize robust control theory to unmodelled
dynamics which is not of the standard sector form, see also
Mäkilä (2006). Similarly, it would be desirable to generalize
performance analysis of system identification and model val-
idation to include unmodelled dynamics which is not of the
sector form.

The rest of the paper is organized as follows. Section 2 intro-
duces some notation and concepts. An LS LTI approximation
problem for NFIR systems is solved in Section 3 via a signal
distribution approach allowing us to interpret the LS problem
as an L2 approximation problem. An LAD LTI approximation
problem is studied in Section 4 by writing it as a certain L1
approximation problem. A generalized L2 approximation prob-
lem is solved in Section 5. Furthermore, some connections to
LTI system identification are established. An L2 approximation
problem for a class of NSS systems is studied in Section 6. The
generalization of the best approximation setup in Mäkilä and
Partington (2003) is considered in Section 7. This is motivated
also via robust stability considerations when the intended use of

the linear model is in controller design. An illustrative example
is given in Section 8. Some conclusions are drawn in Section 9.

2. Preliminaries

Let N, Z, and R denote the nonnegative integers, the integers,
and the reals, respectively. Let card(V ) ∈ N denote the num-
ber of elements in a finite set V. The space s(N) is the linear
space of all real sequences x ={x(k) ∈ R}k∈N over N. The lin-
ear normed space �∞(N) is the space of all real sequences x =
{x(k) ∈ R}k∈N such that ‖x‖∞ ≡ supk∈N |x(k)| < ∞. The lin-
ear normed space �1(N) denotes the space of all real sequences
x = {x(k) ∈ R}k∈N such that ‖x‖1 ≡ ∑

k∈N |x(k)| < ∞.
Let x ∈ s(N) and introduce the autocovariance of the signal

x as

Rxx(k) ≡ lim
n→∞

1

n

n−1∑
t=0

x(t)x(t + k), k ∈ Z.

(Here we put x(t) = 0 for t < 0.) Clearly Rxx(−k) = Rxx(k)

whenever either Rxx(−k) or Rxx(k) exists. The autocovariance
sequence Rxx = {Rxx(k) ∈ R}k∈Z need not exist for a general
signal x. We say that a signal x ∈ s(N) possessing an autoco-
variance sequence Rxx allows GHA (Wiener, 1927, 1930), or
simply that x is then a GHA signal.

A signal x is said to be quasistationary (Ljung, 2001) if
x ∈ �∞(N) and x possesses an autocovariance sequence Rxx .
Furthermore, we say that the two real sequences v and x possess
a crosscovariance sequence if

Rvx(k) ≡ lim
n→∞

1

n

n−1∑
t=0

v(t)x(t + k)

exists for any k ∈ Z. We write Rvx = {Rvx(k) ∈ R}k∈Z. We
shall denote R+

vx = {Rvx(k) ∈ R}k∈N.

3. An L2 approximation problem

In this section an L2 LTI approximation problem for strictly
causal NFIR systems will be solved.

3.1. A preliminary analysis

Let G : D(G; s(N)) → s(N) denote a strictly causal NFIR
system given as

y(t) = (Gu)(t) = g(u(t − 1), . . . , u(t − m)), (1)

where y is the output, u ∈ D(G; s(N)) is the input, g :
D(g; Rm) → R is a mapping and m is a positive integer. Here
D(G; s(N)) denotes the domain of definition of G in s(N), i.e.
the set of all u ∈ s(N) such that y = Gu ∈ s(N). D(G; s(N))

is determined by the domain D(g; Rm) of the mapping g.
An L2 LTI approximation problem for G is now introduced

as follows. Let u ∈ D(G; s(N)). Consider

inf
�

lim
n→∞

1

n

n−1∑
t=0

[(Gu)(t) − (�u)(t)]2, (2)
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