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Abstract

A basic result in the synchronization of linear systems via output coupling is presented. For identical discrete-time linear systems that are
detectable from their outputs and neutrally stable, it is shown that a linear output feedback law exists under which the coupled systems globally
asymptotically synchronize for all fixed connected (asymmetrical) network topologies. An algorithm is provided to compute such a feedback law
based on individual system parameters.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

A notable meeting point for many researchers from different
fields is the topic synchronization. One of the reasons for that
comes from nature as synchronization in large networks of
dynamical systems is a frequently encountered phenomenon
in biology. Among many others, one can count synchronously
discharging neurons, crickets chirping in accord, and metabolic
synchrony in yeast cell suspensions. Another reason is the
abundance of technological applications: coupled synchronized
lasers, vehicle formations, and sensor networks, just to name
a few. We refer the reader to the surveys Boccaletti, Latora,
Moreno, Chavez, and Hwang (2006), Olfati-Saber, Fax, and
Murray (2007), Strogatz (2001) and Wang (2002) for references
and more examples.

The main issue in studying the synchronization of coupled
dynamical systems is the stability of synchronization. As in all
cases where stability is the issue, the question whose answer
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is sought is Under what conditions will the individual systems
synchronize? In a simplified yet widely-studied scenario, where
the individual system dynamics are identical and the coupling
between them is linear, studies focus on two ingredients: the
dynamics of an individual system and the network topology.
Starting with the agreement algorithm in Tsitsiklis, Bertsekas,
and Athans (1986) a number of contributions (Angeli &
Bliman, 2006; Blondel, Hendrickx, Olshevsky, & Tsitsiklis,
2005; Jadbabaie, Lin, & Morse, 2003; Moreau, 2005; Olfati-
Saber & Murray, 2004; Ren & Beard, 2005) have gathered
around the case where the weakest possible assumptions are
made on the network topology at the expense of restrictive
individual system dynamics. It was established in those
works on multi-agent systems that when the individual system
is taken to be an integrator and the coupling is of full-
state, synchronization (consensus) results for time-varying
interconnections whose unions1 over an interval are assumed
to be connected instead of that each interconnection at every
instant is connected.

Another school of research investigates networks with more
complicated (nonlinear) individual system dynamics. When
that is the case, the restrictions on the network topology have to
be made stricter in order to ensure stability of synchronization.
Generally speaking, more than mere connectedness of the
network has been needed: coupling strength is required to be

1 By union of interconnections we actually mean the union of the graphs
representing the interconnections.
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larger than some threshold and sometimes a symmetry2 or
balancedness assumption is made on the connection graph.
Different (though related) approaches have provided different
insights over the years. The primary of such approaches is
based on the calculations of the eigenvalues of the connection
matrix and a parameter (e.g. the maximal Lyapunov exponent)
depending on the individual system dynamics (Pecora &
Carroll, 1998; Wu & Chua, 1995). In endeavor to better
understand synchronization stability, tools from systems theory
such as Lyapunov functions (Belykh, Belykh, & Hasler, 2006;
Hui, Haddad, & Bhat, 2007), passivity (Arcak, 2007; Stan &
Sepulchre, 2007), contraction theory (Slotine, Wang, & El-
Rifai, 2004), and incremental input to state stability (δISS)
theory (Cai & Chen, 2006) have also proved useful.

This paper studies a broad class of linear systems under
weak assumptions on the coupling structure and generalizes
some of the existing results on synchronization. Namely,
we consider identical individual discrete-time linear systems
interacting via (diffusive) output coupling under a fixed (time-
invariant) network topology. The contribution of the paper is
in proving (via construction) the following basic result, which
seems to have been missing from the literature. For a linear
system3 that is neutrally stable and detectable from its output,
there always exists a linear output feedback law that ensures
the global asymptotic synchronization of any connected (not
necessarily symmetric nor balanced) network of any number
of coupled replicas of that system. To fortify our contribution
practically, we provide an algorithm to compute one such
feedback law. It is worth noting that our main theorem makes
a compromise result between the two previously mentioned
cases (i) where synchronization is established for very primitive
individual system dynamics, such as that of an integrator, but
under the weakest conditions on the network topology and (ii)
where the network topology has to satisfy stronger conditions,
such as that the coupling strength should be above a threshold,
for want of achieving synchronization for nonlinear individual
system dynamics.

The remainder of the paper is organized as follows. Notation
and definitions reside in the next section. We give the problem
statement along with our assumptions in Section 3. In Section 4
we provide a preliminary synchronization result on a network
of linear systems with orthogonal system matrices. Then we
generalize that result to establish our main theorem in Section 5.

2. Notation and definitions

The number of elements in a (finite) set S is denoted by
#S. Let N denote the set of nonnegative integers. Let | · |

denote 2-norm. Identity matrix in Rn×n is denoted by In . A
matrix Q ∈ Rn×n is orthogonal if Q QT

= QT Q = In .
Orthogonal matrices satisfy |Qv| = |v| for all v ∈ Rn .
Given C ∈ Rm×n and A ∈ Rn×n , pair (C, A) is observable
if [CT ATCT A2T CT . . . A(n−1)T CT

] is full row rank. Pair

2 A network is symmetric if the matrix representing it is symmetric.
3 x+

= Ax + u; y = Cx .

(C, A) is detectable (in the discrete-time sense) if that C Ak x =

0 for some x ∈ Rn and for all k ∈ N implies limk→∞ Ak x = 0.
Matrix A ∈ Rn×n is neutrally stable (in the discrete-time sense)
if it has no eigenvalue with magnitude greater than unity and the
Jordan block corresponding to an eigenvalue λ with |λ| = 1 is
of size one.4 Let 1 ∈ Rp denote the vector with all entries equal
to unity.

Kronecker product of A ∈ Rm×n and B ∈ Rp×q is

A ⊗ B :=

a11 B · · · a1n B
...

. . .
...

am1 B · · · amn B


In the pages to come we will enjoy the properties (A ⊗ B)(C ⊗

D) = (AC) ⊗ (B D) (provided that products AC and B D are
allowed), A ⊗ B + A ⊗ C = A ⊗ (B + C) (for B and C that
are of same size) and |A ⊗ B| = |A||B|.

Matrix P ∈ Rn×n is an orthogonal projection onto the
subspace range(P) if P2

= P and PT
= P . For an orthogonal

projection P , if the columns of CT
∈ Rn×m are an orthonormal

basis for range(P) then P = CTC . Matrix V = In − P is also
an orthogonal projection and range(V ) = range(P)⊥. It is easy
to see that PV = V P = 0.

A (directed) graph is a pair (N , A) whereN is a nonempty
finite set (of nodes) and A is a finite collection of (ordered)
pairs (arcs) (ni , n j ) with ni , n j ∈ N . A path from n1 to n` is
a sequence of nodes {n1, . . . , n`} such that (ni , ni+1) is an arc
for i ∈ {1, . . . , ` − 1}. A graph is connected if it has a node to
which there exists a path from every other node.5

The graph of a matrix Λ := [λi j ] ∈ Rp×p is the pair (N , A)

where N = {n1, . . . , n p} and (ni , n j ) ∈ A iff λi j > 0.
Matrix Λ is said to be connected (in the discrete-time sense)
if it satisfies:

(i) λi i > 0 and λi j ≥ 0 for all i, j ;

(ii) each row sum equals 1;

(iii) its graph is connected.6

For Λ that is connected, it is known that limk→∞ Λk
= 1rT

where r ∈ Rp has nonnegative entries and satisfies rT1 = 1.
We mention that, in an interconnection of systems, if the matrix
describing the network topology satisfies properties (i) and (ii)
above, then the coupling between the systems is said to be
diffusive.

Given maps ξi : N → Rn for i ∈ {1, . . . , p} and a map
ξ̄ : N → Rn , the elements of the set {ξi (·) : i = 1, . . . , p} are
said to synchronize to ξ̄ (·) if |ξi (k) − ξ̄ (k)| → 0 as k → ∞ for
all i .

4 Note that A is neutrally stable iff there exists a symmetric positive definite
matrix P such that AT P A − P ≤ 0 (Antsaklis & Michel, 1997).

5 Note that this definition of connectedness for directed graphs is weaker than
strong connectivity and stronger than weak connectivity.

6 Recall that for continuous-time applications, definition of connectedness is
different: a matrix [γi j ] is considered connected (in the continuous-time sense)
if γi j ≥ 0 for i 6= j ; each row sum equals 0; and its graph is connected.
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