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Abstract

The stability of neutral systems with distributed delays is investigated in this paper. A modified Lyapunov–Krasovskii functional is constructed
to study this class of systems. The proposed stability criterion is discrete-, distributed- and neutral-delay-dependent. In addition, by this method
one can study the case when the coefficient matrix of the neutral delay term is time-varying uncertain. The reduced conservatism is illustrated in
a numerical example.
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1. Introduction

The stability of linear neutral systems has received
considerable attention in the last two decades. The research
on this topic can be classified into two types, namely a time-
domain approach and a frequency-domain approach. For the
current study of linear neutral systems by the time-domain
approach, the Lyapunov–Krasovskii method (Gu, Kharitonov,
& Chen, 2003) is widely used, and the stability criteria are
usually proposed in terms of linear matrix inequalities (LMIs)
(Boyd, El Ghaoui, Feron, & Balakrishnan, 1994). Reducing
the conservatism of the LMI conditions motivates the present
research.

Stability analysis of neutral systems with distributed delays
is of both practical and theoretical importance. For some
systems, delay phenomena may not be simply considered as
delays in the velocity terms and/or discrete delays in the
states. Therefore, it is desirable to extend the system model to
include distributed delays. Practical applications, modeled by
systems with distributed delays, can be found in Fiagbedzi and
Pearson (1987), Hale and Lunel (1993) and Richard (2003).
However, there are only a few results available to check the
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stability of this class of systems. Gu (2003) and Gu, Han, Luo,
and Niculescu (2001) use a discretized Lyapunov functional
method to check the stability of systems with distributed delays.
However this method is complicated and is difficult to extend
to the synthesis problems.

In the recent papers by Chen and Zheng (2007) and Han
(2004), a descriptor system approach (see Fridman (2001) and
Fridman and Shaked (2002)) has been used to investigate the
stability of neutral systems with discrete and distributed delays.
Han (2004) rewrites the discrete-delay term and employs a
decomposition technique (Goubet-Bartholoméüs, Dambrine, &
Richard, 1997). Different from Han (2004), Chen and Zheng
(2007) rewrite both the discrete-delay and the distributed-delay
terms and apply Moon’s inequality (Moon, Park, Kwon, & Lee,
2001). To the best of our knowledge, the stability criterion
in Chen and Zheng (2007) is the least conservative among
the existing ones. The stability conditions in Chen and Zheng
(2007) and Han (2004) are discrete- and distributed-delay-
dependent but neutral-delay-independent.

In order to further improve the results, one will naturally
think of employing free weighting matrices. Free weighting
matrices, also called slack matrix variables, have been used in
many recent papers to study time-delay systems (e.g., He, Wu,
She, and Liu (2004a,b)). He et al. (2004a) and Wu, He, and She
(2004) study the stability of neutral systems by introducing free
weighting matrices, and the results therein can be extended to
the systems with distributed delays. However, by the methods
in He et al. (2004a) and Wu et al. (2004) one cannot handle
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the case when the coefficient matrix of the neutral-delay term is
time-varying uncertain.

The objective of this paper is to further reduce the
conservatism of the stability conditions for linear neutral
systems with distributed delays. Toward this end, a modified
Lyapunov–Krasovskii functional is constructed and free
weighting matrices are employed. The resultant stability
criterion is less conservative. The reduced conservatism is
illustrated in a numerical example.

Notation. Throughout this paper, AT and A−1 denote the
transpose and the inverse of a matrix A, respectively. A >

0 (A < 0) means that A is positive definite (negative definite).
∗ represents the blocks that are readily inferred by symmetry
and I denotes the unit matrix of appropriate dimensions. In this
paper, if not explicit, matrices are assumed to have compatible
dimensions.

2. Problem statement

Consider the following neutral system with discrete and
distributed delays:

ẋ(t) − C(t)ẋ(t − τ) = A(t)x(t) + B(t)x(t − h)

+ D(t)
∫ t

t−r
x(s)ds

x(t) = φ(t), t ∈ [− max{τ, h, r}, 0] (1)

where x(t) is the state, τ > 0, h > 0 and r > 0 are constant
neutral, discrete and distributed delay, respectively, φ(t) is
the initial condition, A(t), B(t), C(t) and D(t) are uncertain
matrices. We assume that the uncertainties are norm-bounded
and can be described as:

A(t) = A + ∆A(t)

B(t) = B + ∆B(t)

C(t) = C + ∆C(t)

D(t) = D + ∆D(t)[
∆A(t) ∆B(t) ∆C(t) ∆D(t)

]
= L F(t)

[
E A EB EC ED

]
where A, B, C , D, L , E A, EB, EC and ED are known constant
matrices and F(t) is an unknown real and possibly time-
varying matrix with Lebesgue measurable elements satisfying
‖F(t)‖ ≤ 1. Throughout this paper, we assume that the matrix
C(t) is Schur stable.

In this paper, we will study the robust stability of system (1).

3. Main results

First, consider the nominal system of (1), that is the system

ẋ(t) − Cẋ(t − τ) = Ax(t) + Bx(t − h) + D
∫ t

t−r
x(s)ds. (2)

In order to analyze the stability of system (2), the following
integral inequality is required.

Lemma 1 (Gu et al., 2003). For any positive symmetric
constant matrix M and a scalar γ > 0, if there exists a
vector function ω : [0, γ ] → Rn such that the integrals∫ γ

o ωT(s)Mω(s)ds and
∫ γ

o ωT(s)ds are well defined, then the
following inequality holds:

γ

∫ γ

o
ωT(s)Mω(s)ds ≥

(∫ γ

o
ωT(s)ds

)
M

(∫ γ

o
ω(s)ds

)
.

For the stability of system (2), we have the following result.

Theorem 1. For given scalars τ , h and r, the neutral system (2)
is asymptotically stable, if there exist matrices P11 = PT

11, P12,
P13, P22 = PT

22, P23, P33 = PT
33, Q = QT > 0, R = RT > 0,

S = ST, S1, T = T T, U = U T > 0, V = V T > 0,
W = W T > 0, Mi , Ni and Oi (i = 1, 2, . . . , 6) satisfying
the following LMIs:
Ω hN r P ′ τ O
∗ −h R 0 0
∗ ∗ −r V 0
∗ ∗ ∗ −τW

 < 0 (3)

P =

P11 P12 P13
∗ P22 P23
∗ ∗ P33

 > 0,

[
S S1
∗ T

]
> 0 (4ab)

where

Ω =


Ω11 Ω12 Ω13 Ω14 Ω15 Ω16
∗ Ω22 Ω23 Ω24 Ω25 Ω26
∗ ∗ Ω33 Ω34 Ω35 Ω36
∗ ∗ ∗ Ω44 Ω45 Ω46
∗ ∗ ∗ ∗ Ω55 Ω56
∗ ∗ ∗ ∗ ∗ Ω66


Ω11 = Q + S + rU + M1 A + AT MT

1

+ N1 + N T
1 + O1 + OT

1

Ω12 = AT MT
2 + N T

2 − O1 + OT
2

Ω13 = M1 D + AT MT
3 + N T

3 + OT
3

Ω14 = P11 + S1 − M1 + AT MT
4 + N T

4 + OT
4

Ω15 = P12 + M1C + AT MT
5 + N T

5 + OT
5

Ω16 = M1 B + AT MT
6 − N1 + N T

6 + OT
6

Ω22 = −S − O2 − OT
2

Ω23 = M2 D − OT
3

Ω24 = PT
12

− M2 − OT
4

Ω25 = P22 − S1 + M2C − OT
5

Ω26 = M2 B − N2 − OT
6

Ω33 = −
1
r

U + M3 D + DT MT
3

Ω34 = PT
13

− M3 + DT MT
4

Ω35 = PT
23

+ M3C + DT MT
5

Ω36 = M3 B + DT MT
6 − N3

Ω44 = τW + h R + T + r V − M4 − MT
4
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