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Abstract

In this note we consider the open-loop Nash linear quadratic differential game with an infinite-planning horizon. The performance function
is assumed to be indefinite and the underlying system affine. We derive both necessary and sufficient conditions under which this game has a
unique Nash equilibrium.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In the last decades, there is an increased interest in study-
ing diverse problems in economics and optimal control theory
using dynamic games (Engwerda, 2005b). In particular in en-
vironmental economics and macroeconomic policy coordina-
tion, dynamic games are a natural framework to model pol-
icy coordination problems (see e.g. the books and references
in Dockner, JZrgensen, van Long, & Sorger, 2000; Engwerda,
2005b; Plasmans, Engwerda, van Aarle, Di Bartolomeo, &
Michalak, 2006). In these problems, the open-loop Nash strat-
egy is often used as one of the benchmarks to evaluate outcomes
of the game. In optimal control theory it is well-known that, e.g.
the issue to obtain robust control strategies can be approached
as a dynamic game problem (see e.g. Başar & Bernhard, 1995).

In this note we consider the open-loop linear quadratic dif-
ferential game. This problem has been considered by many
authors and dates back to the seminal work of Starr and Ho
(1969) (see, e.g. Abou-Kandil, Freiling, & Jank, 1993; Başar &
Olsder, 1999; Eisele, 1982; Engwerda, 1998a, 1998b; Feucht,
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1994; Haurie & Leitmann, 1984; Kremer, 2002; Lukes &
Russell, 1971; Meyer, 1976; Weeren, 1995). More specifically,
we study in this paper the (regular indefinite) infinite-planning
horizon case. The corresponding regular definite (that is the
case that the state weighting matrices Qi (see below) are semi-
positive definite) problem has been studied, e.g. extensively in
Engwerda (1998a, 1998b). Kremer (2002) (see also Kremer
& Stefan, 2002) studied the regular indefinite case using a
functional analysis approach, under the assumption that the
uncontrolled system is stable. In particular, these papers show
that, in general, the infinite-planning horizon problem does not
have a unique equilibrium. Moreover Kremer (2002) shows
that whenever the game has more than one equilibrium, there
will exist an infinite number of equilibria. Furthermore the
existence of a unique solution is related to the existence of a
so-called LRS solution of the set of coupled algebraic Riccati
equations, see (4). Unfortunately these results obtained for
stable systems cannot be directly used to derive results for sta-
bilizable systems using a feedback transformation. This, since
such a transformation in general corrupts the open-loop in-
formation structure of the problem (see e.g. Engwerda, 2005c
where this point is illustrated).

In Engwerda (2005a) (see also Engwerda, 2005b) the above
results were generalized for stabilizable systems, using a state-
space approach, for a performance criterion that is a pure
quadratic form of the state and control variables. In this note we
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generalize this result for performance criteria that also include
“cross-terms”, i.e. products of the state and control variables.
Performance criteria of this type often naturally appear in eco-
nomic policy making and have been studied, e.g. in Engwerda,
van Aarle, and Plasmans (1999) and Kremer (2002). In this pa-
per we, moreover, assume that the linear system describing the
dynamics is affected by a deterministic variable. For a finite-
planning horizon the corresponding open-loop linear quadratic
game has been studied in Başar and Olsder (1999).

The outline of this note is as follows. Section 2 introduces
the problem and contains some preliminary results. The main
results of this paper are stated in Section 3, whereas Section
4 contains some concluding remarks. The proofs of the main
theorems are included in the Appendix.

2. Preliminaries

In this paper we assume that player i=1, 2 likes to minimize:

lim
tf →∞ Ji(tf , x0, u1, u2) where Ji(tf , x0, u1, u2)

:=
∫ tf

0
[xT(t), uT

1 (t), uT
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⎤⎥⎦ dt , (1)
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⎤⎥⎦ , Rii > 0, i = 1, 2,

and x(t) is the solution from the linear differential equation

ẋ(t) = Ax(t) + B1u1(t) + B2u2(t) + c(t), x(0) = x0. (2)

The variable c(.) ∈ L2 here is some given trajectory. Notice
that we make no definiteness assumptions w.r.t. matrix Qi .

We assume that the matrix pairs (A, Bi), i = 1, 2, are stabi-
lizable. So, in principle, each player is capable to stabilize the
system on his own.

The open-loop information structure of the game means that
both players only know the initial state of the system and that
the set of admissible control actions are functions of time, where
time runs from zero to infinity. We assume that the players
choose control functions belonging to the set of square inte-
grable functions yielding a stable closed-loop system (see also
e.g. Trentelman, 1989)

Us(x0) =
{
u ∈ L2(0, ∞)

∣∣∣∣ lim
tf →∞ Ji(tf , x0, u) ∈ R ∪ {−∞, ∞},

lim
t→∞ x(x0, u, t) = 0

}
.

Here x(x0, u, t) is the solution of (2).1 Notice that the
assumption that the players use simultaneously stabilizing

1 limtf →∞ Ji(tf , x0, u) = −∞(∞) if ∀r ∈ R, ∃Tf ∈ R such that
tf �Tf implies Ji(tf , x0, u)� r(� r).

controls introduces the cooperative meta-objective of both play-
ers to stabilize the system (see e.g. Engwerda, 2005b for a dis-
cussion). For simplicity of notation we will omit from now on
the dependency of Us on x0.

In the rest of the paper the algebraic Riccati equations (see
the end of the paper for the introduced notation)

ATKi + KiA − (KiBi + Vi)R
−1
ii (BT

i Ki + V T
i )

+ Qi = 0, i = 1, 2, (3)

and the set of (coupled) algebraic Riccati equations

0 = ÃT
2 P + P Ã − PBG−1B̃TP + Q̃ (4)

or, equivalently,

0 = AT
2 P + PA −

(
PB +

[
Z1

Z2

])
G−1(B̃TP + Z) + Q

play a crucial role.

Definition 2.1. A solution P T =: (P T
1 , P T

2 ), with Pi ∈ Rn, of
the set of algebraic Riccati equations (4) is called

(a) stabilizing, if �(Ã − BG−1B̃TP) ⊂ C−;2

(b) left–right stabilizing3 (LRS) if
(i) it is a stabilizing solution, and

(ii) �(−ÃT
2 + PBG−1B̃T) ⊂ C+

0 .

The next relationship between certain invariant subspaces
of matrix M and solutions of the Riccati equation (4) is well-
known (see e.g. Engwerda et al., 1999). This property can also
be used to calculate the (left–right) stabilizing solutions of (4).

Lemma 2.2. Let V ⊂ R3n be an n-dimensional invariant sub-
space of M, and let Xi ∈ Rn×n, i = 0, 1, 2, be three real ma-
trices such that

V = Im[XT
0 , XT

1 , XT
2 ]T.

If X0 is invertible, then Pi := XiX
−1
0 , i = 1, 2, solves (4) and

�(A − BG−1(Z + B̃TP)) = �(M|V ). Furthermore, (P1, P2) is
independent of the specific choice of basis of V .

Lemma 2.3.

1. The set of algebraic Riccati equations (4) has an LRS solu-
tion (P1, P2) if and only if matrix M has an n-dimensional
stable graph subspace and M has 2n eigenvalues (counting
algebraic multiplicities) in C+

0 .
2. If the set of algebraic Riccati equations (4) has an LRS

solution, then it is unique.

2 �(H) denotes the spectrum of matrix H; C− = {� ∈ C | Re(�) < 0};
C+

0 = {� ∈ C | Re(�)�0}.
3 In Engwerda (2005b) such a solution is called strongly stabilizing.
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