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Abstract

This paper addresses the problem of designing a global adaptive learning control for robotic manipulators with revolute joints and uncertain
dynamics. The reference signals to be tracked are assumed to be smooth and periodic with known period. By developing in Fourier series expansion
the input reference signals of every joint, an adaptive learning PD control is designed which ‘learns’ the input reference signals by identifying
their Fourier coefficients: global asymptotic and local exponential stability of the tracking error dynamics are obtained when the Fourier series
expansion of each input reference signal is finite, while arbitrary small tracking errors are achieved otherwise. The resulting control is not model
based and depends only on the period of the reference signals and on some constant bounds on the robot dynamics.
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1. Introduction

When the robot dynamics are highly uncertain, adaptive and
learning control laws have been developed in order to cope with
model uncertainties. Adaptive controls require the assumption
that the robot dynamics can be expressed as the product of
known functions and unknown parameters (see Slotine and
Li (1987)). On the other hand, learning controls require that
the reference trajectory is periodic with known period. The
key idea is to use the information obtained in the preceding
trial to improve the performance in the current one. Under the
assumption that the accelerations are measured and a resetting
procedure is performed at the beginning of each trial, learning
control laws were initially proposed in Arimoto, Kawamura,
and Miyazaki (1984), and Bondi, Casalino, and Gambardella
(1988). Several learning controls for robot manipulators have
been subsequently proposed which do not require joint
accelerations (Dixon, Zergeroglu, Dawson, & Costic, 2002;
Hamamoto & Sugie, 2002; Kaneko & Horowitz, 1997; Kuc &
Han, 2000; Messner, Horowitz, Kao, & Boals, 1991; Tayebi,

* This paper was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Associate Editor Gang Tao
under the direction of Editor Miroslav Krstic.

* Corresponding author. Tel. +39 0672597406.

E-mail addresses: liuzzo@ing.uniroma2.it (S. Liuzzo),
tomei @ing.uniromaZ2.it (P. Tomei).

0005-1098/$ - see front matter (©) 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2007.10.025

2004) and removed (Dixon et al., 2002; Kaneko & Horowitz,
1997; Kuc & Han, 2000; Messner et al., 1991; Tayebi, 2004)
the resetting assumption. In Kaneko and Horowitz (1997),
and Messner et al. (1991) two adaptive learning controllers are
proposed for robot manipulators, achieving local asymptotic
tracking under the assumption that the reference input signal
(corresponding to the desired output trajectory) is the integral
of the product of a known differentiable kernel and an unknown
influence function: no robustness analysis is provided for
reference inputs which do not belong to such a class. In Kuc
and Han (2000) four learning control laws (requiring infinite
memory) are applied to a robot arm with revolute joints, which
has been linearized along the desired trajectory. In Hamamoto
and Sugie (2002) a new type of iterative learning control is
proposed which seeks the desired input in an appropriate finite
dimensional input subspace. The controller achieves asymptotic
tracking using only joint position measurements, provided
that an exact resetting is performed at the beginning of each
period. In Dixon et al. (2002) a hybrid adaptive/learning control
is presented, which, combining the iterative learning and
the adaptive control approaches, achieves global asymptotic
convergence to zero of the joint errors (exponential convergence
is not guaranteed): the proposed controller is characterized by
a nonlinear feedback and requires infinite memory. In Tayebi
(2004) three adaptive iterative learning controllers are proposed
that guarantee asymptotic convergence to zero of the position
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and velocity tracking errors, requiring infinite memory and a
resetting procedure at the beginning of each trial. If the exact
reset is not guaranteed, then the position error can be made
arbitrarily small by increasing the feedback gains. In Norrlof
(2002) an adaptive iterative learning control is proposed and
experimentally tested on an industrial robot: each joint is
modeled as an independent transfer function to which the
iterative control is applied, in parallel with the existing feedback
controller.

This paper addresses the problem of designing a global
adaptive learning PD control for robotic manipulators with
revolute joints and uncertain dynamics. The reference signals
to be tracked are assumed to be smooth and periodic with
known period. By developing in Fourier series expansion the
input reference signals of every joint of the manipulator, an
adaptive learning PD control is designed which ‘learns’ the
input reference signals by identifying their Fourier coefficients:
global asymptotic tracking and local exponential tracking of
both the input and the output reference signals are obtained
when the Fourier series expansion of each input reference
signal is finite. When the reference input has an infinite Fourier
series expansion, the input and output tracking errors converge
globally asymptotically and locally exponentially to arbitrarily
small residual sets. The resulting control is not model based and
depends only on the period of the reference signals and on some
constant bounds on the robot dynamics. The control structure
consists of a linear part (proportional and derivative) plus a
learning part which reconstructs the unknown reference input
signal. The structure of the learning part is obtained by adapting
to the multi-input multi-output robot model the method already
used in Del Vecchio, Marino, and Tomei (2003) for local
state feedback control of single-input single-output feedback
linearizable systems and in Liuzzo, Marino, and Tomei (2004)
for local output feedback control of single-input single-output
systems in output feedback form. Preliminary local results
for robot control were obtained in Del Vecchio, Marino, and
Tomei (2001). The results presented here are global and are
based on the choice of a different Lyapunov function proposed
in Koditschek (1988), and Tomei (1991).

The idea of developing in Fourier series expansion a periodic
reference signal was already considered in the literature
(Kempf, Messner, Tomizuka, & Horowitz, 1993; Lee, Lee, &
Bien, 1993; Manabe & Miyazaki, 1994; Qin & Cai, 2001;
Tang, Cai, & Huang, 2000). In Kempf et al. (1993) the
problem of rejecting a periodic disturbance is considered for
discrete time linear systems: only disturbances with a finite
number of harmonics are considered. In Lee et al. (1993)
linear systems are addressed and an application to linearized
robot dynamics is also given. The result is local and no
robustness analysis is provided. In Manabe and Miyazaki
(1994) nonlinear discrete time asymptotically stable systems
are studied for which a learning control is obtained, based on
local linearization by discrete Fourier transform. An application
to robotic manipulators is proposed but the truncation and
the linearization errors are not considered in the convergence
analysis. In Qin and Cai (2001), and Tang et al. (2000)
nonperiodic PD feedback signals are assumed to have a finite

Fourier series expansion. No robustness analysis is addressed
to take into account signals with an infinite Fourier series
expansion.

2. System definition and assumptions

Consider the dynamics of an n-link rigid robot with
rotational joints as described by

H(q)§+C(q,9)q + E(q) + F(q) =u (D

where: g is the n x 1 vector of the joint coordinates; H(q)
is the inertia matrix, which is symmetric and positive definite;
C(q, g) takes into account the Coriolis and centrifugal forces;
F(q) is the friction vector; u is the vector of the applied
torques; E(g) is the vector of the gravity forces. We list in the
following the properties owned by the robot model (1) and the
assumptions under which the control algorithm is designed.

Assumption 2.1. The reference output signal ¢, (t) € CV (with
N > 6) is periodic with known period T and such that, V¢ €
[0, TT, llg-@I = Bo, llgr (Il < Bi, G-I = Bz with B,
B1, B, being known positive constant reals.

Property 2.1. Given a proper definition of C(q,q) that
is not unequivocally defined by the form C(q,q)q, the
matrix dH (q)/dt — 2C(q, q) is skew-symmetric. One possible
definition for the elements of C(q, q) which leads to the skew-
symmetry of dH (q)/dt —2C(q, q) is

. 1| .,70H; "\ (0H;; 0Hjx\ .
C;i(g.q) =~ |7 —4L L S 2
i(4-9) =3 [q 0 +k§=] ( 94, oq ) 4

which implies that dH(q)/dt = C(q,q) + CT(q,§) and
C(q, x1)x2 = C(q, x2)x1, Vxi, x2 € R".

Property 2.2. The inertia matrix H(q) is such that, Vq, q, q1,
g2 € R", Hy < |H(@Q)| = Hm, |H(q1) — H(g2)|l =< kn

g1 — g2l and ||dH (¢)/dt|| < Hpm g ]l-

Property 2.3. The matrix C(q, q) is such that, Vq, q1, q2,q €
RLNC@, Pl = Cullgll and ||IC(q1, gr) — Clg2, 9 =
kcllgr — g2

Property 2.4. The vector of the gravity forces E(q) is such
that,¥q, q1,q2 € R", |E(@)|| < Ey and | E(q1) — E(g2)| <
kellgr — qzll.

Assumption 2.2. The friction vector F(g) is such that F(0) =
0and, Vg1, g2 € R", [|[F(q1) — F(¢2) | < Fullgr — g2

Assumption 2.3. The bounds H,,, Hy, kzi, Cy, ks Ems kE,
Fy defined in Property 2.2-2.4 and Assumption 2.2 are known
positive reals.

The bounded periodic reference input u, () € K" of period
T, corresponding to the reference g, (¢), can be computed as

Ur = H(CIr)Qr + C(gr, q.r)q.r + E(g,) + F(L}r)' 2
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