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Abstract

This paper compares particular instances of control-relevant identification, closed-loop identification, and controller identification (either in
an actual loop or in a virtual reference feedback tuning approach, VRFT) problems. Significant similarities appear between them which allow,
in particular, alternative formulations of the VRFT methodology in a differentiable setting.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper discusses computation of the gradient of an iden-
tification (ID) cost index in four closed-loop scenarios. On one
hand, closed-loop process ID (Gilson & Van den Hof, 2005;
Ljung, 1999) and a control-relevant ID setting are considered
(Hjalmarsson, 2005; Van den Hof, 1998). On the other hand,
data-based controller adjustment procedures are discussed:
closed-loop controller ID (Landau et al., 2001), virtual refer-
ence feedback tuning (VRFT) (Campi et al., 2002; Campi &
Savaresi, 2006; Sala & Esparza, 2005), and iterative feedback
tuning (IFT) (Hjalmarsson et al., 1998). The four scenarios
offer different perspectives about the same problem and cross-
fertilisation is possible. In particular, the VRFT approach and
that in Landau et al. (2001) may be considered the same. One
of the objectives of the paper is extending Landau’s and VRFT
techniques: the unified approach includes the procedures in
Campi and Savaresi (2006) and outlines other possible alter-
natives.

The structure of the paper is as follows: next section discusses
the notation, identification objectives and calculation of the
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derivatives of a closed-loop operator. Section 3 discusses four
ID scenarios pinpointing the common aspects of all of them,
followed by a conclusion section.

2. Preliminaries and notation

Let us consider a nonlinear mapping N : Su → Sy , i.e.,
y = Nu, where signals y, u (known by assumption) belong to
Hilbert spaces Su, Sy with scalar product 〈·, ·〉 and norm ‖·‖.
By far, the most common signal spaces used in practical system
ID (Ljung, 1999) are a finite set of real-valued input and output
samples obtained at regular intervals, u = {u0, u1, . . . , uN },
y = {y0, y1, . . . , yN }, being the norm ‖y‖ =

√∑N
i=0y

2
i .

Consider now a parameterised nonlinear model ym=T (�, u),
where � is a set of adjustable parameters. A cost index, J,
will be defined as the squared norm of the so-called filtered
prediction error ε = F(ym − y) (least-squares criteria), where
F is a suitable linear filter:1

J (�) = 1
2‖ε‖2 = 1

2‖F(ym − y)‖2. (1)

Nonlinear system ID will be understood as minimising J (�).
Gradient computation is at the root of many optimisation tech-
niques (Luenberger, 2003), which may be used in order to
find a (maybe local) minimiser �opt. In order to compute the

1 Unless otherwise stated, F =I (identity) will be assumed in the sequel.
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gradient, the derivative of J with respect to each adjustable
parameter �i is given by2

dJ

d�i

=
〈
F(ym − y), F

dym

d�i

〉
. (2)

The term dym/d�i = dT (�, u)/d�i will be denoted as model
derivative. Computation of dym/d�i may require gradient
propagation through time (Werbos, 1990), if model T is a re-
current one.3 When fitting N data samples, F in (2) is a N ×N

Toeplitz convolution matrix formed with impulse response
coefficients of F (Burrus, 1972), and dym/d�i is an N × 1
column vector.

If there exists an ideal �∗ such that y = T (�∗, u) and � is
close enough to �∗ (ym − y is small), then

ym − y = T (�, u) − T (�∗, u) ≈ dT

d�i

∣∣∣∣
�
(�i − �∗

i ), (4)

where only increments of parameter �i have been considered.
On the sequel, the subscript i will be removed and the deriva-
tives with respect to � must be understood to be with respect
to any arbitrarily chosen element of �.

Open-loop ID: In a control context, a basic scenario is the so-
called prediction-oriented ID (Ljung, 1999) of a plant y = Pu:
a data set u, y is available and ym = P(�, u) (“output error”
model structure, OE). As u does not depend on �, the gradient
of J, (2), in this case is

dJ

d�
=

〈
F(P (�, u) − y), F

�P

��
(�, u)

〉
. (5)

Closed-loop ID: The set of scenarios considered in next sec-
tion involve a closed-loop with a plant P and a controller C,
given by widely used basic equations: e = r − y, y = Pu,
u = Ce, being r a reference signal. Under mild assumptions,
y = PC(r − y) implicitly defines a closed-loop map y = Mr ,
and e = Sr = (I − M)r . Also, e = r − y = r − PCe, i.e.,
(I + PC)e = r hence

S = (I + PC)−1, M = PC(I + PC)−1. (6)

In general, y �= SPCr; basically, only in the linear PC case
M = (I + PC)−1PC is also true, as (10) later shows.

2 Derivative notation d/d� will denote the total derivative taking into
account implicit dependences on � of all arguments of a function (applying
chain rule if needed). Partial derivatives �/�� will account only for explicit
dependences on argument � (e.g., in (1), dependence on � of J is implicit).

3 For instance, consider a nonlinear discrete-time model

ym(t + 1) = 0.5ym(t) + �ym(t)2u(t). (3)

Then, dym(t +1)/d�=�ym(t +1)/��+ (�ym(t +1)/�ym(t))(dym(t)/d�)=
ym(t)2u(t)+(0.5+2�ym(t)u(t)) dym(t)/d� is a recurrent equation for com-
puting the required model derivatives. In closed-loop, as u(t) itself depends
on past values of ym(t) and hence, indirectly on �, the expression would
need the addition of �ym(t)2du(t)/d�, where du(t)/d� would come from
the loop equations, see (8)–(10).

Considering a model with parameterisations P(�, u) and
C(�, e), its output can be expressed as

ym = P(�, C(�, r − ym)) = P�C�(r − ym), (7)

where shorthand P�u=P(�, u), C�e=C(�, e) have been intro-
duced. Differentiability of plants and controllers with respect
to all of its arguments will be assumed. Linearity of plants
and controllers, when applicable, will refer to the second ar-
gument (input signals) and not to the parameterisations. Some
linearisations will be denoted by M̄ = �M/�r , S̄ = I − M̄ ,
P̄ = �P/�u, C̄ = �C/�e. For instance, when trying to fit N
input–output data samples, P̄ is an N ×N matrix with elements
P̄ij = dym(i)/du(j) which may be considered the convolution
coefficients of a linear time-varying system.4

On the following, the notation M�, M� will refer to the
achieved closed-loop map when a plant P� is operating with
a fixed controller or when a controller C� is operating with a
fixed plant (the “real” one), respectively, whereas M will denote
a target closed-loop map for control design. Notation S�, S̄�,
M̄�,�, etc. (with obvious meaning) will also be used.

The following results, obtained from (7) via chain rule and
implicit function theorem, will be later used for gradient cal-
culations (dependence on parameters not subject to derivative
calculations will be omitted):

dym

d�
=

(
I + �P�

�u

�C

�e

)−1 �P�u

��
= S̄�

�P�u

��
, (8)

dym

d�
=

(
I + �P

�u

�C�

�e

)−1 �P

�u

�C�e

��
= S̄�P̄

�C�e

��
, (9)

dym

dr
= M̄ = (I + P̄ C̄)−1 �P

�u

�C

�e
= S̄P̄ C̄. (10)

For instance, (9) is obtained from derivation of y=PC�e as fol-
lows: dym/d�=(�P/�u)(du/d�)=P̄ (�C�e/��+C̄�(de/d�))=
P̄ (�C�e/�� + C̄�(−dym/d�)); (10) from dym/dr = P̄ C̄(I −
dym/dr).

3. Closed-loop identification scenarios

Scenario 1: closed-loop plant ID: Consider data r, u, y, ob-
tained in closed-loop with a known controller C in operation,
in order to adjust some parameters of a plant model P�. In that
case, ym = M�r is readily obtained by simulating the closed-
loop ym = P�(C(r − ym)), and model derivatives in (2) are
given by (8)

dJ

d�
=

〈
M�r − y, S̄�

�P�u

��

〉
. (11)

4 As an example, for system (3),

dym(i)

du(j)
=

⎧⎨
⎩

�ym(j)2, i = j + 1,

(0.5 + 2�ym(i − 1)u(i − 1))
dym(i−1)

du(j)
, i > j + 1,

0, i < j + 1.
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