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Abstract

A controller synthesis method is presented for closed-loop stability and asymptotic tracking of step input references with zero steady-state
error. Integral-action is achieved in two design steps starting with any stabilizing controller and adding a PID-controller in a configuration that
guarantees robust stability and tracking. The proposed design has integral-action integrity, where closed-loop stability is maintained even when
any of the proportional, integral, or derivative terms are removed or the entire PID-controller is limited by a constant gain matrix. The integral

constant can be switched off when integral-action is not wanted.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

We consider integral-action controller design for linear, time-
invariant (LTT) multi-input multi-output (MIMO) plants. Our
goal is to achieve closed-loop stability and robust asymptotic
tracking of step-input references with zero steady-state error.
This objective is extended to type-m integral action in each
output channel so that polynomial references up to order m — 1
applied at each input would be asymptotically tracked.

The simplest controllers that achieve integral-action are in the
proportional+integral+derivative (PID) form. However, closed-
loop stability can be achieved using these low order controllers
only for certain classes of plants, and many others cannot be
stabilized using PID-controllers (Giindes & Wai, 2005). The
standard method of achieving integral-action is the well-known
full-order observer-based integral-action controller design
based on an augmented plant model, which uses linear quadratic
regulator (LQR) or pole-placement methods to find state-
feedback gains for the states of the integrators in addition to the
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states of the plant (Goodwin, Graebe, & Salgado, 2001). Al-
though this method achieves both closed-loop stability and
steady-state accuracy, the integrators cannot be completely
switched off without affecting closed-loop stability. Further-
more, this standard method does not easily extend to higher
integral-action type (Giindes & Kabuli, 1998). In this paper
we propose a two-step integral-action synthesis procedure
that achieves robust tracking by adding a PID-controller over
a previously designed stabilizing controller that is already
present in the feedback loop. An initial stabilizing controller,
which does not have integral-action, is designed (to be op-
timal and to satisfy given design objectives) for the original
plant using any method (LQR, Hy, etc.). Then an additional
PID-controller is designed for a stable system (the numerator-
matrix of the plant). The two controllers are then configured
to achieve closed-loop stability and integral-action together.
All integral-action controllers can be obtained by inclusion of
a free controller parameter. The main advantage of this two-
step approach is that the PID-controller block containing the
integral-action designed in the second step can be switched
off (taken out completely and the states are reset) without
affecting closed-loop stability. The PID-controller can be de-
signed with an additional property that we call integral-action
integrity, where closed-loop stability is maintained even when
any of the proportional, integral, or derivative terms are re-
moved or the entire PID block is limited by a constant gain
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matrix. If the design requires a higher or lower integral-action
type, the initial design can be easily modified by including
incrementally designed additional integrator terms in the con-
troller. High-order integral terms can be deleted to achieve
a lower type all without re-designing the entire stabilization
loop. This incremental feature of the design starting from sta-
bilizing controllers for the original plant and adding on inte-
grators as necessary makes it possible to compare the system
performance for different integral-action types since all designs
are based on the original plant instead of different augmented
systems. In contrast with the standard approach to integral-
action design for an augmented system, the design proposed
here does not use an augmented system identification and does
not need to re-identify the plant for a stabilizing controller
without that integral-action component or a lower/higher-order
integral-action component. Simulation comparisons of the pro-
posed method with the standard augmentation-based method
were given for a stable plant in Mete and Giindes (2004). Since
the performance of integral-action control depends on the sys-
tem operating in a linear range and integral-action controllers
suffer serious loss of performance due to integral windup, which
occurs when the actuators in the control-loop saturate, it may
be desirable to switch off the integral term while maintain-
ing closed-loop stability for protection against windup (Doyle,
Smith, & Enns, 1987; Kothare, Campo, Morari, & Nett, 1994;
Kapoor, Teel, & Daoutidis, 1998). The methods proposed here
simply design controllers whose integral-action components
can be turned-off (or limited), and are not intended as alternate
anti-windup schemes. When the integral-action is turned-off,
the states in the part of the controller implementation that is
taken out of service are all set to zero and the initial conditions
and outputs are reset to zero.

Although continuous-time systems are discussed, all results
apply also to discrete-time systems with appropriate modifi-
cations. Notation: U is the extended closed right-half plane,
ie, U ={s € C|Re(s) 20} U {oo}; R, Ry denote real and
positive real numbers; R, denotes real proper rational func-
tions of s; S C Ry is the stable subset with no poles in U;
M(S) is the set of matrices with entries in S; I, is the n x n
identity matrix; we use / when the dimension is unambigu-
ous. The Hyo-norm of M(s) € M(S) is denoted by || M(s)||
(i.e., the norm | - || is defined as ||M|| := sup,.q, G (M(s)),
where ¢ is the maximum singular value and Ol is the bound-
ary of U). For simplicity, we drop (s) in transfer matrices
such as G(s). We use coprime factorizations over S; i.e., for
G e er,xq, G = XY~! denotes a right-coprime-factorization
(RCF), G = Y~!Xdenotes a left—co~prime—factorization (LCF),
where X, X € §"%4, Y € 8979, Y € 8™, detY(oc0) # 0,
det Y (oc0) # 0.

2. Problem description and preliminaries

Consider the LTI, MIMO unlty -feedback system Sys(G, C)
in Fig. 1; G € Ry*? and C € RL*" denote the plant’s and the
controller’s transfeg—\funcnons. It is assumed that Sys(G, C ) is
well-posed, G and C have no unstable hidden-modes, and G €

u c
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Fig. 1. Unity-feedback system Sys(G, 6).

)

Ry is full normal rank. Let Hpu=(1,+GC) '=1,—GC(I,+
GC) 1— : I, — GHy,=: I, — Hy, denote the (input-error)
transfer-function from u to e.

Definition 1. (i) The system Sys(G, C ) is called stable iff the
closed-loop transfer-funcUon from (u v) to (y, w)is stable (i1)
The controller C stabilizes G iff C is proper and Sys(G, c ) is
stable. (iii) The stable system Sys(G, C) has integral-action iff
H,, has blocking-zeros at s = 0; it has type-m integral action
in each output channel iff H,, has (at least) m blocking- zeros
at zero, i.e., (s"™ " VH,)(©0) = 0. (iv) The controller C is
called a controller with integral-action iff C stabilizes G and
D of any RCF C =N, D; ! has blocking-zeros at s =0, i.e.,
D.(0) =0; C is called a controller with type-m integral action
iff C stabilizes G and D, has (at least) m blocking-zeros at
s=0,1ie., (s_(’"_l)Dc)(O) =

Let G = XY~ L= ¥-1X be any RCF, LCF of the plant,
C N.D; ! —D ]N be any RCF, LCF of the controller. Then
C stablhzes Gif and only if My, := YD +XN is unimodular,
equivalently, Mg = D.Y + N X is unimodular (Giindes &
Desoer, 1990; Vidyasagar, 1985). Suppose that Sys(G, 6) is
stable. Then the error e(¢) due to step inputs u(¢) goes to zero as
t— o0 1f and only if H,,(0) =0. Therefore, the stable system
Sys(G, C) achieves asymptotic tracking of constant reference
inputs with zero steady-state error if and only if it has integral-
action; it achieves asymptotic tracking of polynomial references
up to order m — liff it has (at least) type-m integral action
(Ledn de la Barra, Emami-Naeini, & Chincon, 1998). Wnte

eu—(l—i—GC) l—I—GC(l—i-GC) =D, MY =
I — XMy N . By Definition 1, Sys(G, C ) has integral-action
if and only if H,,(0) = (DCMZI?)(O) =0.1f C = N.D;!
is an integral-action controller, then Sys(G, C ) has integral-
action. For H,,(0) = (DCML_IY )(0) = 0, it is sufficient but
not necessary to have D (0) = 0. For plants that have poles
at s =0, rank Y(0) <r and hence, the system may achieve
integral-action _even if D.(0) # 0. For plants with no poles
at s = O,rank Y (0) = r implies Sys(G, C ) has integral-action
if and only if C= N.D; s an integral-action controller, i.e.,
D.(0) =

Lemma 2.1 states two necessary conditions for integral-
action. In Lemma 2.2, stabilizing controllers are decomposed
into a sum of two components. A controller designed to stabi-
lize the stable numerator X of the plant G can be added through
a denominator factor to any controller that stabilizes G:

Lemma 2.1 (Necessary conditions for integral-action). Let
G € Rrxq If the system Sys(G, c ) has integral-action, then
@) (normal) rank G = r <m; (ii) G has no transmission-zeros
ats =0.
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