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Abstract

We develop stochastic optimal control results for nonlinear discrete-time systems driven by disturbances modeled by a Markov chain.
A characterization and a computational procedure for a control law which maximizes a cost functional, related to expected time-to-violate
specified constraints or to expected total yield before constraint violation occurs, are discussed. Such an optimal control law may be viewed as
providing drift counteraction and is, therefore, referred to as drift counteraction stochastic optimal control. Two simulation examples highlight
opportunities for applications of these results to hybrid electric vehicle (HEV) powertrain management and to oil extraction.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Consider a discrete-time system

x(t + 1) = f (x(t), v(t), w(t)), (1)

where x(t) is the state vector, v(t) is the control vector, w(t)

is the vector of measured disturbances, and t is an integer, t ∈
Z+. The system has control constraints which are expressed in
the form v(t) ∈ U , where U is a given set.

The behavior of w(t) is modeled by a Markov chain (Dynkin
& Yushkevich, 1967) with a finite number of states w(t) ∈
W = {wj , j ∈ J }. The transition probability from w(t) = wi ∈
W to w(t+1)=wj ∈ W is denoted by P(wj |wi, x̄), and in our
treatment of the problem we allow this transition probability to
depend on the state x(t) = x̄.

Our objective is to determine a control function u(x, w)

such that, with v(t) = u(x(t), w(t)), a cost functional of
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the form

J x0,w0,u = Ex0,w0

�x0,w0,u(G)−1∑
t=0

g(x(t), v(t), w(t)) (2)

is maximized. Here, �x0,w0,u(G) ∈ Z+ denotes the first time
instant the trajectory of x(t) and w(t), denoted by {xu, wu},
resulting from the application of the control v(t)=u(x(t), w(t)),
exits a prescribed compact set G. See Fig. 1. The specification
of the set G reflects the constraints existing in the system. Note
that {xu, wu} is a random process, �x0,w0,u(G) is a random
variable, and Ex0,w0 [·] denotes the expectation conditional to
initial values of x and w, i.e., x(0)=x0, w(0)=w0. When clear
from the context, we omit the subscript and square brackets
after E.

Note that if g = 1, then J x0,w0,u = E[�x0,w0,u(G)], and our
objective is to find a control law which maximizes the expected
time of exiting G (or, equivalently, the expected time-to-violate
specified constraints). For instance, for a vehicle using an adap-
tive cruise control to follow another, randomly accelerating and
decelerating vehicle, the control objective may be to keep the
distance to the lead vehicle within specified limits for as long
as possible with only very gradual (small) and smooth acceler-
ations and decelerations.
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Fig. 1. The set G and two trajectories, {xu, wu}, exiting G at random time
instants due to a random realization of w(t). Here W = {w1, w2, w3}.

For a more general g, our objective may be interpreted as
maximizing expected cumulative yield before the combined
trajectory, {xu(t), wu(t)}, is forced outside of G. The regions
where larger instantaneous yield is attained may also be regions
where exiting G is more likely due to the properties of the
transition probabilities. As one example, operating a machine
harder may yield larger instantaneous yield, but it may also
cause earlier failure of the machine (wherein ‘working’ and
‘failed’ states of the machine may be modeled as two states in
the Markov chain).

For continuous-time systems, under an assumption that w(t)

is a Wiener or a Poisson process, it can be shown (Afanas’ev,
Kolmanovskii, & Nosov, 1996) that determining an optimal
control in this kind of a problem reduces to solving a non-
smooth partial-differential equation (PDE). For instance, for a
first order stochastic system, dx = (v − w0) dt + � · dw, where
w0 is a constant, w is a standard Wiener process, the control v

satisfies |v|� v̄, and g = 1, this PDE has the form

1

2
�2 �2V

�x2 + �V

�x
(−w0) +

∣∣∣∣�V

�x

∣∣∣∣ v̄ + 1 = 0.

The boundary conditions for this PDE are V (x)=0 for x ∈ �G,
where �G denotes the boundary of G. The optimal control has
the form

v = v̄ sign

(
�V

�x

)
.

As compared to solving the above PDE numerically, the
discrete-time treatment of the problem, which is the focus of
the present paper, appears to provide a more computationally
tractable approach to determining the optimal control. In what
follows, we will treat this discrete-time problem within the
framework of optimal stopping (Dynkin & Yushkevich, 1967)
and drift counteraction (Kolmanovsky & Maizenberg, 2002)
stochastic optimal control, and we will discuss opportunities
for applications of our results to hybrid electric vehicle (HEV)
management and to oil extraction.

The paper is organized as follows. In Section 2 we develop
theoretical results to characterize optimal control in problem
(1), (2). In Section 3 we discuss computational procedures to
approximately compute this optimal control law. Since one of
our motivations is to develop theory for more effective control

of automotive systems, in Section 4 we consider an example
which highlights opportunities for application of our results to
HEV powertrain management. In Section 5 another application-
oriented example is discussed, where the objective is to maxi-
mize the cumulative yield of oil extracted from a well before the
well is lost. Finally, concluding remarks are made in Section 6.

2. Theoretical results

Given a state vector, x−, and disturbance vectors, w−, w+ ∈
W , we define

LuV (x−, w−)

�Ex−,w−[V (f (x−, u(x−, w−), w−), w+)] − V (x−, w−)

=
∑
j∈J

V (f (x−, u(x−, w−), w−), wj ) · P(wj |w−, x−)

− V (x−, w−). (3)

The following theorem provides sufficient conditions for the
optimal control law, u∗(x, w):

Theorem 1. Suppose that g(x, u, w)�ε for some ε > 0 and
that there exists a control function u∗(x, w) and a continuous,
non-negative function V (x, w) such that

Lu∗V (x, w) + g(x, u∗(x, w), w) = 0 if (x, w) ∈ G,

LuV (x, w) + g(x, u(x, w), w)�0 if (x, w) ∈ G, u �= u∗,

V (x, w) = 0 if (x, w) /∈ G. (4)

Then, u∗ maximizes (2), and, for all (x0, w0) ∈ G, V (x0, w0)=
J x0,w0,u∗ . Furthermore, J x0,w0,u, E[�x0,w0,u(G)] are finite for
any policy u, and the function V , satisfying (4), if exists, is
unique.

Proof. We define T (t)=min{t, �x0,w0,u(G)}, where x0=xu(0),
w0 = wu(0). Following the same arguments as in the proof of
Theorem 5.1 in Dynkin (1963) and taking advantage of T (t) be-
ing a Markov moment (Dynkin, 1963), of finiteness of E[T (t)],
and of boundedness of V , Dynkin’s formula for the discrete-
time system (1) holds in the form

E[V (xu(T (t)), wu(T (t)))] − V (xu(0), wu(0))

= E

T (t)−1∑
k=0

LuV (xu(k), wu(k)). (5)

Using (4) and g�ε we obtain

E[V (xu(T (t)), wu(T (t)))] − V (xu(0), wu(0))

� − E

T (t)−1∑
k=0

g(xu(k), wu(k))� − ε · E[T (t)].

Thus (2/ε)max(x,wi)∈GV (x, wi)�E[T (t)], where the left-
hand side is finite because V is continuous and G is com-
pact. Thus E[T (t)] is bounded by the same upper bound
for any t . Viewing T (t) = T (t; �) as a random variable
(a function of elementary event, �) we note that it is
monotonically non-decreasing with t . Considering expec-
tation as a Lebesgue integral and applying Levi’s theorem
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