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Abstract

The paper addresses methods for parameter sensitivity analysis in a large, nonlinear, mechanistic model which is to be run in an on-
line estimation scheme. The parameter sensitivity has been obtained by numeric approximation. The paper proposes and applies successive
orthogonalization of the sensitivity derivative for parameter ranking. The method is easy to implement and the results are easily interpreted.
Orthogonalization of the sensitivity matrix gives a triangular form of the squared sensitivity. The paper shows how the triangular form of the
sensitivity derivative gives a particularly easy form of the variance contribution of individual parameters, provided the model error can be
assumed Gaussian. This information has been used to decide how many parameters from the ranked set are to be selected for on-line estimation.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper addresses the problem where a high fidelity, sim-
ulation model of a system is to be used on-line for some su-
pervision or control purpose. The model gives a mechanistic
representation (i.e. based on first principles modelling) of the
represented process. On-line use implies more specifically that
the model’s outputs, ŷ, are to be adapted to a set of real-time
measured outputs, y, by adjusting a subset of the model param-
eters, �. The considered model class is given by
ŷ = g(�, v; x0),
where ŷ ∈ Rny is the model output vector, g is a differentiable
operator representing an underlying nonlinear, dynamic system
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described by a model on differential algebraic equation (DAE)
form, � ∈ Rn� is the model parameter vector, v ∈ Rnv is a
measured input vector which may be present, and x0 ∈ Rx is
the initial state vector.

Mechanistic simulation models normally have a large pa-
rameter vector. Many of the parameters can be determined and
fixed during modelling. Candidates for on-line updating are
found among uncertain or time varying parameters. Often it is
necessary to further reduce the candidate set due to insufficient
identifiability through the available outputs or more practical
reasons such as limited computation time. An assumption in
this work is that the reduced parameter vector � ∈ Rn� should
have a physical interpretation. This is accomplished by select-
ing n� < n� elements of � and placing these elements into �.
Hence the problem is to select � to obtain a reasonable balance
between the need for a small prediction error, and the need for
a fast convergence rate of the on-line optimization algorithms
used in the estimation scheme.

This paper suggests to first rank the candidate parameters
based on successive orthogonalization of the parameter sensi-
tivity matrix, see Section 3. This method can be used without
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considering the probability distribution of the model error. As
a second step, the parameters’ individual variance contribution
is used to determine how many parameters from the ranked set
are to be included for estimation. If model error has a Gaussian
probability distribution, then orthogonalization of the sensitiv-
ity derivative gives a particularly simple form of the variance
contribution of each parameter, see Section 4.

2. Parameter ranking

The sensitivity of the model outputs to the parameter vector
is defined as

S(�, v, W ; x0) = W−1/2 dŷ(�)

d�
∈ Rny×n� , (1)

where W−1/2 is a diagonal weighting matrix. In the following
S will be used for S(�, v, W ; x0). It is paramount that S has
been sensibly scaled since the scaling directly affects the result
of the parameter ranking. Here, the model outputs ŷ and �
are variables with a physical interpretation. The scaling has
therefore been chosen according to their natural or permissible
variation range. Further, S is calculated for a given � and a given
operating point given by v and x0. A numerical approximation
of S will be used in a later example, in which case g needs not
be differentiable.

Since the model is nonlinear, global identifiability can gen-
erally not be proven. To increase the probability that the model
is identifiable over the whole parameter space, the sensitivity
must be checked for multiple parameter vector values and
operating points. This requires efficient automated analysis
methods.

Each column of the scaled sensitivity S will express all out-
puts’ sensitivity to one parameter, and is therefore a sensitivity
direction for this parameter. Assuming that S has been properly
scaled it is of interest to find out if a column contains several
large elements, indicating high sensitivity to the parameter in
these outputs. The size of the sensitivity to the parameters can
be compared through the norm of the columns. In addition to
this, the degree of linear dependence between the columns is of
interest. A high linear dependence between two columns would
indicate that altering these parameters have a similar effect on
the outputs.

Suitable linear transformations of S or S′S can reveal proper-
ties such as norm and linear dependence. Li, Henson, and Kurtz
(2004) determine parameter ranking by principal component
analysis and compute the minimum distance between each
sensitivity vector and the eigenvectors (principal direction).
Ranking by condition number has been used by Weijers and
Vanrolleghem (1997). These methods require the design of a se-
lection algorithm to combine the sensitivity vectors before com-
paring the properties of different subsets. (Brun, Reichert, &
Kunsch, 2001) and (Belsley, 1991) rank sensitivity vector
subsets according to the condition number, or “collinear-
ity index”, of C.C is given by in S′S = DCD where
D = diag(‖s1‖2, . . . , ‖sn�‖2) and ci,j = 〈si, sj 〉/‖si‖‖sj‖,
recognized as cos � (s1, s2) in R2. This is combined with in-
spection of different norms of the columns of the sensitivity

derivative in order to decide which parameters are the most
dominant. The method is however largely manual, and not
very well suited for analysis of a large number of sensitivity
derivative matrices.

Successive orthogonalization as demonstrated in Section 3,
is in effect QR transformation with column permutation (QRcp)
of S. The advantage of this linear transformation lies in its
simplicity and directness. It utilizes the original directions S,
making the result easy to interpret. Also, no algorithm for com-
bination of the columns needs to be designed as the selection
order is an inherent part of the transformation itself. Although
QRcp is described as a type of linear matrix transformation in
text books (Golub & Van Loan, 1996), it is not reported applied
to parameter ranking for estimation using nonlinear, mecha-
nistic models. The closest application is reported by Kanjilal,
Ballav, and Saha (1995) who applied QRcp for finding the most
dominant directions in a linear regression matrix in a multilayer
neural network.

3. Ranking by successive orthogonalization of S

Successive orthogonalization of S involves ranking the
columns of S according to their norm and linear independence,
simultaneously. The order of selection is stored in a permu-
tation matrix. The method can be used without assumptions
about the probability distribution of the model error. The se-
lection procedure is demonstrated by example using the matrix
S = [a b c ].

Example 1. Assume column vector a in S has the largest
norm and therefore corresponds to the parameter with the
highest individual average (normed) sensitivity. This direc-
tion is selected, a unit vector, q1 = a/‖a‖, is formed and
removed from b and c by subtracting the projection of b and c

onto q1,

b̃ = b − (q ′
1b)q1 and c̃ = c − (q ′

1c)q1

b̃ and c̃ are now orthogonal to q1. Assuming b originally was
pointing in nearly the same direction as a, then a large com-
ponent would have been subtracted from b when forming b̃.
Assume therefore that c̃ has the larger norm, and is selected to
form the second unit vector, q2 = c̃/‖̃c‖. The q2 direction is
removed from vectors of the remaining set, which is now only
b̃, to form the new vector b̄

b̄ = b̃ − (q ′
2b̃)q2

and set q3 = b̄/‖b̄‖. The selection order and decomposition can
be summarized into SE = QR, where

S

[1 0 0
0 0 1
0 1 0

]
=

[
q1 q2 q3

] [
q ′

1a q ′
1c q ′

1b

0 q ′
2c q ′

2b

0 0 q ′
3b

]
. (2)

The result (2) can be further refined by extracting the di-
agonal, R = DR̄ which gives the cross product E′S′SE=



Download English Version:

https://daneshyari.com/en/article/698437

Download Persian Version:

https://daneshyari.com/article/698437

Daneshyari.com

https://daneshyari.com/en/article/698437
https://daneshyari.com/article/698437
https://daneshyari.com

