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Abstract

It was shown by Zames and Shneydor and later by Mossaheb that a high-frequency dither signal of a quite arbitrary shape can be used to
narrow the effective nonlinear sector of Lipschitz continuous feedback systems. In this paper, it is shown that also discontinuous nonlinearities
of feedback systems can be narrowed using dither, as long as the amplitude distribution function of the dither is absolutely continuous and has
bounded derivative. The averaged system is proven to approximate the dithered system with an error of the order of dither period.
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1. Introduction

A frequently used technique to stabilize a nonlinear feed-
back system in Luré form is by injecting a high-frequency
dither signal, which narrows the nonlinear sector. If the dither
frequency is sufficiently high, the behavior of the dithered
system will be qualitatively the same as an averaged system,
whose nonlinearity is the convolution of the amplitude distri-
bution of the dither and the original nonlinearity. Analysis and
control design can then be carried out on the averaged sys-
tem, which in most cases is simpler to analyze due to lack
of external dither signal and narrower nonlinearity. For the
case when the original nonlinearity is Lipschitz continuous, the
scheme outlined above was rigorously justified using properties
of the amplitude distribution function of the dither Zames &
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Shneydor, 1976, 1977). Similar results were obtained later using
classical averaging theory (Mossaheb, 1983).

The Lipschitz continuity assumption on the nonlinearity
of the dithered system is often violated in practice. Indeed,
discontinuous nonlinearities in feedback systems with high-
frequency excitations appear in a large variety of applications,
including systems with adaptive control (Astrom & Witten-
mark, 1989), friction (Armstrong-Helouvry, 1991), power
electronics (Lehman & Bass, 1996), pulse-width modulation
(Peterchev & Sanders, 2001), quantization (Gray & Neuhoff,
1998), relays (Tsypkin, 1984), and variable-structure control
(Utkin, 1992). It is common to analyze these systems using
empirical methods such as describing functions, which can
give a quite good intuitive understanding. It is hard, however,
to get bounds on the approximation these methods provide
and they may even give erroneous results, so therefore there
is a need for a solid treatment of discontinuous systems with
high-frequency excitation. Recently, certain classes of these
systems have been thoroughly studied, such as power convert-
ers (Lehman & Bass, 1996), pulse-width modulated systems
(Gelig & Churilov, 1998; Teel, Moreau, & Nesic, 2004), relay
systems (lannelli, Johansson, Jonsson, & Vasca, 2003a), and
stick-slip drives (Sedghi, 2003).

The main contribution of the paper is an averaging theorem
for a general class of nonsmooth systems with a quite arbitrary
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periodic dither. The result states that the dithered and the av-
eraged systems have qualitatively the same behavior when the
dither has sufficiently high frequency and an absolutely contin-
uous amplitude distribution function with bounded derivative.
The averaging theorem might be interpreted as an extension to
nonsmooth feedback system of previous results, which were
limited to Lipschitz-continuous systems (Zames & Shneydor,
1976, 1977; Mossaheb, 1983).

The outline of the paper is as follows. The dithered system
and the corresponding averaged system are introduced in Sec-
tion 2. The amplitude distribution function of the dither signal
is thoroughly discussed, since it plays a key role in the anal-
ysis. The main result on the approximation error between the
dithered and the averaged systems is presented in Section 3.
The paper is concluded in Section 4 and the proofs are reported
in Appendix.

2. Preliminaries
2.1. Dithered system

The dithered feedback system is defined as

X(t) = folx(0), 1) + Z Ji(x (@), Dni(gi (x(1), 1) + 6; (1),

i=1

x(0) = xo. (1)
The state x belongs to R?. The functions f; : R? x R — RY,
i=1,...,m,are assumed to be globally Lipschitz with respect

to both x and 7, i.e., there exists a positive constant L s such
that for all x1, x, € R? and 1, 1 >0,

[ fi(x1,t1) — filxo, )< Lyp(Ix1 — x2| + [t1 — t2).

We further assume that fj is piecewise continuous with respect
to t, fo(0,t) =0 for all £ >0, and

[fo(x1, 1) — folx2, I Lrlxy — x2]

for all x;,x; € R? and r>0. Similarly, the functions g; :
R xR — R,i=1,...,m, are assumed to have a common
Lipschitz constant L > 0, i.e.,

lgiCx1, 1) — gi(x2, )| < Lg(Ix1 — x2] + |11 — 12])

for all xq, xp € R?, t1, tp >0. The nonlinearities n; : R — R,
i=1,...,m,are assumed to be functions of bounded variation.
Recall that the total variation 7V of a function n : R — R is

k
TV(n)= sup > InG) —nzi-l,

—00<z0 K21 <+ K2k <00 ;

where the supremum is taken over all finite sequences {z; }f?zo
with k > 1 (Wheeden & Zygmund, 1977). If the total variation is
bounded, we simply say that n is of bounded variation. Hence,
the functions n; can be discontinuous, but they are necessarily
bounded. Each dither signal 6; : [0, 00) — R is supposed
to be a p-periodic measurable function bounded by a positive
constant My, i.e., |0;| < My Vi.

When the differential equation (1) has a discontinuous right-
hand side (due to that at least one #n; is discontinuous), existence
and uniqueness of solutions depend critically on the consid-
ered definition of solution (Filippov, 1988). In the following,
we assume that the differential equation (1) has at least one
absolutely continuous solution x (¢, xo) on [0, co0) (in the sense
of Carathéodory). We suppose that the time intervals when the
solution is at a discontinuity point of n; are of zero Lebesgue
measure. Note that as a consequence, we do not consider
solutions with sliding modes. Furthermore, we suppose that
the solutions have no accumulation of switching events (Zeno
solutions).

The assumptions on system (1) imply that there exists a
positive constant L, such that |x(¢1) — x(t2)| < Ly|t; — 2| for
almost all 0<#; <t < oo. Estimates of the Lipschitz constant
L, can be easily obtained on any compact interval.

Remark 1. The assumption on the nonlinearity n; is weak. The
class of considered systems thus contains quite exotic differen-
tial equations for which, for example, existence and uniqueness
of solution cannot easily be addressed. However, for most cases
in applications the existence of a Carathéodory solution is rea-
sonable. Existence and uniqueness of solutions for dithered re-
lay systems are discussed in Iannelli, Johansson, Jonsson, and
Vasca (2004).

Remark 2. The assumption on global Lipschitz continuity of
the functions f;, g; is used to derive the Lipschitz bound L,.
The assumption can be relaxed by assuming Lipschitzness on
a bounded set provided that dithered and averaged solutions
belong to such set, see Teel and Nesic (2000).

2.2. Dither signals and their amplitude distribution functions

Definition 2.1. The amplitude distribution function Fs: R —
[0, 1] of a p-periodic dither signal ¢ : [0, c0) — R is defined as

1 X
Fs(O=udle € [0. p) - 60 <D,
where u denotes the Lebesgue measure.

When the amplitude distribution function is absolutely con-
tinuous (with respect to its Lebesgue measure), the amplitude
density function f5(&) is defined as

dF;
d¢

which exists almost everywhere.

The amplitude density and amplitude distribution functions
play in a deterministic framework the same role as the prob-
ability density and cumulative distribution functions play in
a stochastic framework. In particular, the amplitude distribu-
tion function is bounded, monotonously increasing, continuous
from the right, and, if it is absolutely continuous, its derivative
corresponds to the amplitude density function.

[5(O=2 =20,
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