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Abstract

We propose a solution to moving-horizon state estimation that incorporates inequality constraints in both a systematic and computationally
efficient way, akin to Kalman filtering. The proposed method allows the on-line constrained optimization problem involved in moving-horizon
state estimation to be solved offline, requiring only a look-up table and simple function evaluations for real-time implementation. The method
is illustrated via simulations on a system that has been studied in literature.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Moving horizon; State estimation; Parametric programming; Kalman filter; Constraints

1. Introduction

For linear systems with Gaussian noise, the celebrated
Kalman filter (Kalman, 1960) provides a recursive solution
to the real-time minimum-variance state estimation problem,
given prior knowledge of the distributions of the initial states,
disturbances, and measurement noise. The Kalman filter has
also been applied to nonlinear systems in the form of the ex-
tended Kalman filter (EKF), which is based on linearization of
the nonlinear model around the current mean and covariance
estimates. However, the EKF may exhibit poor convergence
properties (Haseltine & Rawlings, 2005; Maybeck, 1982).

Inspired by the success of real-time optimization over a
moving horizon used in model-predictive control (MPC),
moving-horizon estimation (MHE) via real-time optimization
was suggested as a practical method for addressing model
nonlinearities and inequality constraints in state estimation,
while keeping the size of the real-time optimization problem
finite (Muske, Rawlings, & Lee, 1993; Rao & Rawlings, 2002;
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Rao, Rawlings, & Lee, 2001; Robertson, Lee, & Rawlings,
1996; Simon & Simon, 2003). Furthermore, it was shown that
constrained state estimators have additional useful properties,
such as producing unbiased state estimates and smaller state
error covariance (Simon & Simon, 2003). Including inequality
constraints in MHE provides a mechanism to improve the es-
timation based on process knowledge (e.g., flow rates or com-
positions must be greater than or equal to zero), and can also
help compensate for poor choices in the prior distributions.

While the power of MHE has been clearly demonstrated,
the computational requirements of real-time constrained opti-
mization that MHE entails may render it impractical in cases
where computing power is limited and/or data sampling rates
are excessive. For example, in real-time monitoring and di-
agnostics for aircraft engines—a case where Kalman filtering
is widespread and constraints on estimates may be known a
priori—data are typically collected at rates over tens of Hz,
leaving little time for state estimation via real-time optimiza-
tion (Simon & Simon, 2003).

To address the computational efficiency issues posed by
MHE, we propose in this paper an MHE approach that by-
passes real-time optimization. At each time point, the proposed
algorithm uses input and output data to consult an off-line con-
structed look-up table that indicates what (Kalman-filter-like)
closed-form expression from a finite collection must be used
to calculate the state estimate. Both the look-up table and the
finite collection of closed-form expressions for state estimation
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are constructed once via off-line optimization. Our approach
parallels the multi-parametric programming approach proposed
for constrained MPC of linear systems (Pistikopoulos, Dua,
Bozinis, Bemporad, & Morari, 2002).

In the rest of the paper, we briefly present elements of Kalman
filtering, MHE, and mp-QP that are relevant to this work. Next,
we show how mp-QP can be applied to MHE. Finally, we
demonstrate the applicability of the proposed approach by pre-
senting simulations on a system that has appeared in literature,
and discuss future developments.

2. Background

2.1. System description

Let a dynamic system be described by the discrete-time
model

xk+1 = fk(xk, uk, wk), (1)

yk = hk(xk) + vk , (2)

where the time point k takes integer values; xk ∈ Rn is the
state vector; uk ∈ Rnu is the known input vector; the vec-
tors wk ∈ Rnw and vk ∈ Rnv are random variables (often
assumed to be independent and Gaussian) representing distur-
bances on the state and measured output, respectively; yk ∈
Rny is the measured output vector; the vector functions fk(·) :
Rn × Rnu × Rnw → Rn and hk(·) : Rn → Rny represent
the discretized form of a set of ordinary or partial differential
equations and may not be available in closed form. It is also
assumed that the states and disturbances satisfy the following
inequality constraints:

Dxxk �dx, Dwwk �dw, Dvvk �dv, (3)

where the matrices Dx, Dw, Dv and vectors dx, dw, dv
are known. The origin is assumed to satisfy the constraints
on wk and vk . Typically, the constraints take the form of
upper and lower bounds on the vector components (e.g.,
xmin
k,i �xk,i �xmax

k,i , where the subscript i refers to the ith
component of the vector xk). It has been shown (Robertson
& Lee, 2002) that constraints also allow one to incorporate
non-Gaussian distributions (e.g., asymmetric or truncated
distributions) in the state estimation problem.

2.2. Moving-horizon state estimation and Kalman Filtering

MHE is performed by solving the following optimization
problem in real time at each discrete time point t:

{x̂mh
t−N+1|t , . . . , x̂mh

t |t , ŵmh
t−N+1|t , . . . , ŵmh

t−1|t , v̂mh
t−N+1|t , . . . , v̂mh

t |t }
= argmin

x̂t−N+1|t ,...,x̂t |t ,
wt−N+1|t ,...,ŵt−1|t ,

v̂t−N+1|t ,...,v̂t |t

×
⎡
⎣

t∑
k=t−N+1

‖v̂k|t‖2
R−1 +

t−1∑
k=t−N+1

‖ŵk|t − w̄‖2
Q−1

+‖x̂t−N+1|t − x̄t−N+1|t−N‖2
P−1

⎤
⎦ (4)

subject to:

x̂k+1|t = fk(x̂k|t , uk, ŵk|t ), k = t − N + 1, . . . , t − 1, (5)

yk = hk(x̂k|t ) + v̂k|t , k = t − N + 1, . . . , t , (6)

Dxx̂k|t �dx, Dvv̂k|t �dv, k = t − N + 1, . . . , t , (7)

Dwŵk|t �dw, k = t − N + 1, . . . , t − 1, (8)

where ‖v‖2
A=̂vTAv; ŝk|t denotes the estimated value of s at

time point k, given measurements up to and including time
t; and overbar denotes mean value. The positive definite ma-
trices Q�0, R�0, and Pt−N+1�0 are the covariances of the
state disturbance, output disturbance, and state, respectively.
The resulting x̂mh

t |t is the optimal filtered state estimate, while

{x̂mh
j |t }t−1

j=t−N+1 are the optimal smoothed estimates of past states.
Note that this formulation allows for a non-zero-mean state
disturbance, w̄, and assumes a zero-mean output disturbance.

A key issue for MHE is how to update or propagate
(x̄t−N+1|t−N, Pt−N+1). The pair (x̄t−N+1|t−N, Pt−N+1) sum-
marizes the model-based influence of old data not explicitly
considered in the current finite horizon, i.e., data correspond-
ing to time points before t − N + 1. This is the estimation
problem counterpart of the terminal cost in receding horizon
MPC (Mayne, Rawlings, Rao, & Scokaert, 2000; Nikolaou,
2001; Rawlings, 2000). In probabilistic terms (Rao et al.,
2001; Robertson et al., 1996) this is a problem of updating the
conditional density function of the state. Unfortunately, it is
not generally possible to derive analytical expressions for the
conditional density of nonlinear or constrained systems. As a
result, the Kalman filter (or EKF) is typically used to approx-
imate (x̄t−N+1|t−N, Pt−N+1) in MHE. A potential problem
with using the Kalman filter approximation in MHE is that a
poor initial state covariance matrix, P0, may lead to instability
as a result of overweighting past data relative to newer data.
Convergence and stability issues have been analyzed (Rao
et al., 2001) via dynamic programming and the concept of
arrival cost (the analog of cost-to-go in dynamic programming
for the control problem). Stability considerations place an
upper bound on the arrival cost, which in turn places a lower
bound on the initial covariance matrix P0.

For a linear time-invariant system, model equations (5) and
(6) can be written in the following form:

x̂k+1 = Ax̂k + Buk + Gŵk , (9)

yk = Cx̂k + v̂k , (10)

where A, B, C, G are constant matrices.
For a linear time-invariant system without inequality con-

straints and with horizon extending from the initial time 0 to
current time t, the optimization problem to solve for state esti-
mation at time t is

{x̂mh
0|t , . . . , x̂mh

t |t , ŵmh
0|t , . . . , ŵmh

t−1|t , v̂mh
0|t , . . . , v̂mh

t |t }

= argmin
x̂0|t ,x̂t |t ,

ŵ0|t ,...,ŵt−1|t ,
v̂0|t ,...,v̂t |t

⎡
⎣

t∑
k=0

‖v̂k|t‖2
R−1 +

t−1∑
k=0

‖ŵk|t − w̄‖2
Q−1

+‖x̂0|t − x̄0‖2
P−1

0

⎤
⎦ (11)
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