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Abstract

This paper develops the idea of min–max robust experiment design for dynamic system identification. The idea of min–max experiment design
has been explored in the statistics literature. However, the technique is virtually unknown by the engineering community and, accordingly, there
has been little prior work on examining its properties when applied to dynamic system identification. This paper initiates an exploration of
these ideas. The paper considers linear systems with energy (or power) bounded inputs. We assume that the parameters lie in a given compact
set and optimise the worst case over this set. We also provide a detailed analysis of the solution for an illustrative one parameter example and
propose a convex optimisation algorithm that can be applied more generally to a discretised approximation to the design problem. We also
examine the role played by different design criteria and present a simulation example illustrating the merits of the proposed approach.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The goal of experiment design is to adjust the experimen-
tal conditions so that maximal information is gained from
the experiment. Background to this problem can be found in
early statistics literature (Cox, 1958; Fedorov, 1972; Karlin &
Studden, 1966; Kempthorne, 1952; Kiefer & Wolfowitz, 1960;
Wald, 1943; Whittle, 1973; Wynn, 1972) as well as in the
engineering literature (Arimoto & Kimura, 1973; Gagliardi,
1967; Goodwin, Murdoch, & Payne, 1973; Goodwin & Payne,
1973; Goodwin, Payne, & Murdoch, 1973; Goodwin & Payne,
1977; Hildebrand & Gevers, 2003a; Levadi, 1966; Mehra, 1974;
Zarrop, 1979). A recent survey is contained in Gevers (2005)
where many additional references can be found. The focus in
the engineering literature has been predominately on experi-
ment design for dynamic system identification.

A key issue with experiment design for dynamic systems
is that the model is typically nonlinearly parameterised. This
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means, amongst other things, that the Fisher information matrix
(Goodwin & Payne, 1977, p. 6) which is typically used as the
basis for experiment design, depends, inter alia, on the true sys-
tem parameters (i.e. the nominal optimal experiment depends
on the very thing that the experiment is aimed at finding).

This issue has been recognised in the statistics literature
where several approaches have been explored. These include:
• Sequential design, where one iterates between parameter esti-

mation, on the one hand, and experiment design using the cur-
rent parameter estimates, on the other, see Chernoff (1975),
Ford and Silvey (1980), Ford, Titterington, and Wu (1985),
Müller and Pötscher (1992), Walter and Pronzato (1997), and
Wu (1985).

• Bayesian design (Atkinson, Chaloner, Juritz, & Herzberg,
1993; Atkinson & Doner, 1992; Chaloner & Larntz, 1989;
Chaloner & Verdinelli, 1995; El-Gamal & Palfrey, 1996;
Sebastiani & Wynn, 2000). The Bayesian approach is char-
acterised by the minimisation of the expected value (over the
prior parameter distribution) of a local optimality criterion
related to the information matrix.

• Min–max design (Biedermann & Dette, 2003; D’Argenio &
Van Guilder, 1988; Dette, Melas, & Pepelyshev, 2003;
Fedorov, 1980; Landaw, 1984; Melas, 1978; Pronzato &
Walter, 1988).
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However, there has been little work on robust experiment
design for engineering problems. This has been highlighted in
the recent survey paper (Hjalmarsson, 2005, p. 427) where it
is stated that “…as usual in experiment design, in order to
compute the optimal design the true system has to be known.
Methods that are robust with respect to uncertainty about the
system is a wide open research field.”

Preliminary work in the engineering literature on robust ex-
periment design includes substantial work on iterative design
(Gevers, 2005; Hjalmarsson, 2005) and an insightful sub-
optimal min–max solution for a one parameter problem (Walter
& Pronzato, 1997, p. 339). Actually the latter problem will be
discussed in detail in Section 3 of the current paper. Also, a
number of very recent engineering papers refer to the idea of
min–max optimal experiment design—see for example papers
presented at SYSID’06, e.g., Gevers and Bombois (2006),
Goodwin, Welsh, Feuer, and Derpich (2006), and Mårtensson
and Hjalmarsson (2006).

Our goal in the current paper is to develop the idea of
min–max optimal experiment design for dynamic system iden-
tification. To gain insight into this approach, we explore an il-
lustrative example in depth.

We assume prior knowledge in the form that the system
parameters, �, are contained in a given compact set �. We then
choose a design criterion f (M(�), �) where M(�) is the Fisher
information matrix, evaluated at �, and design the experiment to
optimise the worst case of f (M(�), �) over �. Notice that this
differs from the usual approaches to experiment design in the
engineering literature which typically optimise f (M(�0), �0)

for some given nominal value �0.
Our approach is more akin to the usual formulation of ro-

bust optimal control which typically considers the worst case
(Zhou, Doyle, & Glover, 1996). Indeed, there are substan-
tial links between the work presented here and continuous
game theory (Başar & Bernhard, 1995; Başar & Olsder, 1995;
Fudenberg & Tirole, 1991; Owen, 1995; Szép & Forgó, 1985).
We explore some of these connections below.

The merits of the approach proposed in this paper are illus-
trated by an example (presented in Section 5) which shows, for
a realistic second order system, that an order of magnitude im-
provement in the worst case performance in experiment design
can be achieved at the expense of only a few percent degrada-
tion in the nominal performance.

The layout of the remainder of the paper is as follows: in
Section 2 we give a general formulation of the min–max ap-
proach to robust optimal experiment design. Section 3 explores
an illustrative one parameter example in considerable detail so
as to give insight into the problem. In Section 4 we describe the
extension to multi-parameter systems. In Section 5 we present
several results illustrating the merits of the proposed approach.
Finally, in Section 6 we draw conclusions.

2. Experiment design criteria

2.1. The information matrix

So as to be specific we first consider a single input single
output linear discrete time system, with input {ut } and output

{yt }, of the form

yt = G1(q)ut + G2(q)wt ,

where G1 and G2 are rational transfer functions, q is the
forward shift operator, G2(∞) = 1, and {wt } is zero mean
Gaussian white noise of variance �. We let ��[�T, �T, �]T

where � denotes the parameters in G1 and � denotes the para-
meters in G2.

We recall that the log likelihood function (Goodwin & Payne,
1977, p. 130) for data Y given parameters �, is

ln p(Y |�) = −N
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Fisher’s information matrix is obtained by taking the following
expectation (Goodwin & Payne, 1977, p. 130):
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and where EY |� denotes the expectation over the distribution of
the data given �.

We assume an open-loop experiment so that wt and ut are
uncorrelated. We also assume that G1, G2 and � are indepen-
dently parameterised. Taking expectations, as in (3), M can be
partitioned as

M =
[
M1 0

0 M2

]
where M1 is the part of the information matrix related to �, and
M2 is independent of the input. Thus,

M1�
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where �εt/�� satisfies

�εt

��
= −G2(q)−1 �G1(q)

��
ut .

Notice that M1 depends on the full parameter vector �. Assum-
ing N is large, it is more convenient to work with the scaled
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