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Stability of Kalman filtering with Markovian packet losses�
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Abstract

We consider Kalman filtering in a network with packet losses, and use a two state Markov chain to describe the normal operating condition of
packet delivery and transmission failure. Based on the sojourn time of each visit to the failure or successful packet reception state, we analyze
the behavior of the estimation error covariance matrix and introduce the notion of peak covariance, as an estimate of filtering deterioration
caused by packet losses, which describes the upper envelope of the sequence of error covariance matrices {Pt , t �1} for the case of an unstable
scalar model. We give sufficient conditions for the stability of the peak covariance process in the general vector case, and obtain a sufficient
and necessary condition for the scalar case. Finally, the relationship between two different types of stability notions is discussed.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of state estimation is of great importance in
various applications ranging from tracking, detection and con-
trol, and in linear stochastic dynamical systems, Kalman filter-
ing (Kailath, Sayed, & Hassibi, 2000; Kalman, 1960) plays an
essential role. Recently there has been an increased research
attention for filtering in distributed systems where sensor mea-
surements and final signal processing take place in geograph-
ically separate locations and the usage of wireless or wireline
communication channels is essential for data communication.
In contrast to traditional filtering problems, an important fea-
ture in these networked systems is that the delivery of mea-
surements to the estimator is not always reliable and losses of
data may occur. This leads to estimation schemes which are
required to handle missing data.

� This paper was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Associate Editor George
Yin under the direction of Editor Ian Petersen.

∗ Corresponding author. Tel.: +61 2 6125 8646; fax: +61 2 6125 8660.
E-mail addresses: minyi.huang@rsise.anu.edu.au (M. Huang),

s.dey@ee.unimelb.edu.au (S. Dey).
1 M. Huang was with Department of Electrical and Electronic Engineering,

The University of Melbourne, where he performed his work.

0005-1098/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2006.10.023

In this paper, we consider optimal filtering in a linear system
with random packet losses. When the observer has full infor-
mation about the loss of each packet, this leads to a modified
filtering structure switching between the conventional Kalman
filter when packets are received, and a deterministic predictor
when a packet loss occurs.

We focus on the n dimensional linear time-invariant system

xt+1 = Axt + wt, t �0,

where the initial state is x0 at t = 0. The sensor measurements
are obtained starting from t �1 in the form

y0
t = Cxt + vt , t �1,

where C ∈ Rm×n, and then y0
t is transmitted by a channel. Here

{wt, t �0} and {vt , t �1} are two mutually independent se-
quences of independent and identically distributed (i.i.d.) Gaus-
sian noises with covariance matrices Q and R > 0, respectively.
The two noise sequences are also independent of x0, which is
a Gaussian random vector with mean x̄0 = Ex0 and covari-
ance matrix Px0 . The underlying probability space is denoted
as (�, F, P) where F is the �-algebra of all events.

We consider a communication channel such that y0
t is exactly

retrieved or the packet containing y0
t is lost due to corrupted data
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or substantial delay. When the packet is successfully received,
one obtains the observation

yt = y0
t

and if there is a packet loss, by our convention, the observation
obtained by the receiver is

yt ≡ 0.

Under this assumption, the underlying communication link may
be looked at as an erasure channel at the packet level.

We use �t ∈ {0, 1} to indicate the arrival (with value 1) or loss
(with value 0) of packets. Here �t may be interpreted as resulting
from the physical operating condition of a network. Specifically,
the state 0 for �t may correspond to channel error or network
congestion which causes a straight packet loss or long delay
resulting in packet dropping at the receiver. For facilitating
the presentation, 0 and 1 shall be called the failure state and
normal state, respectively. To capture the temporal correlation
of the channel variation (e.g., in bursty error conditions), �t is
modelled by a two state Markov chain with the transition matrix

� =
[

1 − q q

p 1 − p

]
, (1)

where p and q, respectively, are called the failure rate and recov-
ery rate and p, q > 0. For instance, 1 −p denotes the probabil-
ity of the channel remaining at the normal state 1 after one step
if it starts with state 1. This is usually called the Gilbert–Elliott
channel model (Elliott, 1963; Gilbert, 1960). Obviously, a small
value (close to 0) for p and a large value (close to 1) for q mean
the channel is more reliable.

Based on the history Ft = �(yi, �i , i� t), which is the �-
algebra generated by the available information up to time t
(i.e., all events that can be generated by these random vari-
ables), one can write a set of filtering and prediction equa-
tions corresponding to the optimal estimate x̂t = E[xt |Ft ] and
x̂t+1|t = E[xt+1|Ft ], t �0, respectively, by the same method as
in Sinopoli et al. (2004) which dealt with the scenario of i.i.d.
packet losses. We use the convention F0 = {∅, �}. The details
for the recursion of x̂t and x̂t+1|t will not be repeated here. In
this paper we focus on the estimation error of x̂t+1|t with an
associated prediction error covariance matrix

Pt+1|t�E(xt+1 − x̂t+1|t )(xt+1 − x̂t+1|t )′.

We write Pt+1|t = Pt+1. We use M ′ to denote the transpose
of a vector or matrix M. To characterize the prediction error
covariance, one can easily derive the following random Riccati
equation

Pt+1 = AP tA
′ + Q − �tAP tC

′(CP tC
′ + R)−1CP tA

′,
t �1. (2)

The initial condition in (2) is P1 =Var(x1)=AP x0A
′+Q. Note

that �t appears as a random coefficient in the recursion.
Under a Bernoulli i.i.d. packet loss modelling, the filtering

stability may be effectively studied by a modified algebraic
Riccati equation (MARE), which is obtained by replacing �t

in Eq. (2) by the packet arrival rate �. Subsequently, the analysis
amounts to identifying a critical value �c such that stability
holds if and only if the arrival rate is greater than �c (see Section
4 for additional discussion). This approach is generally termed
as being based on the uncertainty threshold principle (Sinopoli
et al., 2004). In contrast, when the channel model is given by
a Markov chain, such a conversion into a deterministic MARE
is no longer feasible, and since the channel is described by
several independent parameters, the usual threshold argument
is not applicable.

1.1. Background and related work

Filtering and estimation constitute an important aspect in
sensor network deployment for monitoring, detection or track-
ing (Chong & Kumar, 2003; Zhang, Moura, & Krogh, 2005;
Zhao, Shin, & Reich, 2002), as well as multi-vehicle coordi-
nation (Varaiya, 1993), since in reality sensors can only obtain
noisy information about a physical activity in its vicinity. And
for many linear stochastic models, a useful tool is the standard
Kalman filtering theory which has been widely used in various
estimation and control scenarios. Recently there is an increased
attention for its application in distributed networks while new
theoretical questions and implementation issues emerge. In
close relation to estimation in lossy sensor networks, there
also has been a long history of research on filtering with
missing signals at certain points of time, i.e., the output does
not necessarily contain the signal in question and it may be
only a noise component. Such models were referred to as
systems with uncertain observations; see (Hadidi & Schwartz,
1979; Jaffer & Gupta, 1971; Nahi, 1969; Tugnait, 1981). The
early work (Nahi, 1969) considered optimal state estimation
within the class of linear filters; by modelling the uncertainty
via a sequence of i.i.d. binary random variables indicating
the signal availability, the author derived a recursion similar
to the Kalman filter utilizing the statistics of the unobserved
binary uncertainty sequence (Nahi, 1969). The work (Hadidi
& Schwartz, 1979) gave conditions for obtaining recursive
filtering when the uncertainty sequence is not necessarily i.i.d.
Asymptotic stability of the MMSE filter was established in
Tugnait (1981) when the loss sequence is i.i.d. with known loss
probability; since in this case the estimation covariance is gov-
erned by a deterministic equation, one can obtain stability anal-
ysis by constructing an equivalent linear system without data
losses.

In the more recent research on network models, (Fletcher,
Rangan, & Goyal, 2004; Smith & Seiler, 2003) considered
state estimation with lossy measurements resulting from time-
varying channel conditions. In particular, Smith and Seiler
(2003) developed a suboptimal jump linear estimator for com-
plexity reduction in computing the corrector gain using finite
loss history where the loss process is modelled by a two state
Markov chain. The work (Fletcher et al., 2004) introduced a
more general multiple state Markov chain to model the loss and
nonloss channel states, and the asymptotic mean square estima-
tion error for suboptimal linear estimators is analyzed and op-
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