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Abstract

This paper studies the linear dynamic errors-in-variables problem for filtered white noise excitations. First, a frequency domain Gaussian
maximum likelihood (ML) estimator is constructed that can handle discrete-time as well as continuous-time models on (a) part(s) of the unit
circle or imaginary axis. Next, the ML estimates are calculated via a computationally simple and numerically stable Gauss–Newton minimization
scheme. Finally, the Cramér–Rao lower bound is derived.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Linear dynamic errors-in-variables (EIV) modelling is im-
portant in those applications where one is looking for a bet-
ter understanding of the underlying input–output relation of a
process rather than making output predictions from noisy obser-
vations. One can distinguish between two cases: either the exci-
tation of the process can be freely chosen, or one has to live with
the operational (natural) perturbations. If the excitation can be
freely chosen, then it is strongly recommended to use periodic
excitation signals because it significantly simplifies the identi-
fication problem: (i) non-parametric estimates of the disturbing
noise (co-)variances are obtained in a preprocessing step, and
(ii) since mutually correlated, coloured input/output errors are
allowed, identification in feedback is just a special case of the
general framework (see Pintelon & Schoukens, 2001). In the
second case the excitation is often random and parts of it may
even be unmeasurable. This paper handles the second case, as-
suming that the excitation is a stochastic process with rational
power spectrum. As will be shown in the sequel of the pa-
per, the second case is much more complicated than the first:
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besides the plant model one should also identify simultaneously
the signal model, and the input/output noise models.

Identifiability is a first key issue in EIV modelling: under
which conditions on the excitation, the input/output errors, and
the process is the EIV problem uniquely solvable? This ques-
tion has been studied in detail in econometrics and an extensive
literature is available (see Söderström, 2006a for an exhaustive
overview). For example, Anderson and Deistler (1984) han-
dles the identifiability of scalar EIV problems with coloured
input/output errors, while Nowak (1993) covers the multivari-
able case. The results of Anderson and Deistler (1984) have
been generalized in Castaldi and Soverini (1996) and Agüero
and Goodwin (2006).

A second key issue is the numerical calculation of the EIV
estimates. Several algorithms have been proposed, each of
them having their specific advantages and disadvantages (see
Söderström, 2006a for an exhaustive overview). For example,
the statistically efficient time domain maximum likelihood
(ML) method has high computational complexity, while the
computationally simpler instrumental variable methods have
low statistical accuracy (Söderström, 2006a). This paper
presents the frequency domain version of the time domain
Gaussian ML estimator (Söderström & Stoica, 1989). Besides
the slightly different handling of the transient effects (in the
frequency domain the transient depends on the initial AND

the final conditions), the spectral factorization is also carried
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out differently in the frequency domain (no Riccati equation
must be solved in each iteration step). The advantages of the
frequency domain approach are that it is equally simple to iden-
tify continuous-time (CT) models as discrete-time (DT) ones,
that filtering of the input/output signals reduces to the selec-
tion of the appropriate frequencies in the input/output spectra,
that time domain signals as well as frequency domain spectra
can be handled, and that improper systems (order numerator
> order denominator) can be identified. The latter is important
in, for example, the modelling of electrical machines (Kamwa,
Viarouge, Le-Huy, & Dickinson, 1992).

A third issue is the identification of CT models. Except for
Mahata and Garnier (2005) and Söderström, Larsson, Mahata,
and Mossberg (2006), all methods handle the DT case and no
algorithms for direct CT EIV modelling are available. The time
domain methods in Mahata and Garnier (2005) and Söderström
et al. (2006) identify CT models in the presence of white in-
put/output errors, and Mahata and Garnier (2005) also handle
the nonuniformly sampled data case. The approach presented
in this paper identifies DT as well as CT models from measured
frequency domain spectra or uniformly sampled time domain
signals disturbed by coloured input/output errors.

A fourth issue is filtering of the measured input/output sig-
nals: often one is only interested in the plant characteristics
on a part of the unit circle (or imaginary axis); or one would
like to remove the effect of trends (low-frequency range), dis-
turbances (mains, high-frequency noise, . . .), and errors that
cannot be written as filtered white noise (e.g. sinewave with
time-varying frequency); or for reasons of generating easily
high-quality starting values, a high (infinite)-dimensional sys-
tem is approximated in each frequency band by a low-order
model. The prefiltering does not affect the input/output rela-
tionship, and is equivalent to dividing the input/output noise
models by the prefilter characteristics. To preserve the effi-
ciency and/or consistency of the identified plant model, the
input/output noise models should be flexible enough to fol-
low the input/output error spectra accurately and, as such, they
will try to cancel the effect of the prefilter. Hence, through
the prefilter and input/output noise model selection a com-
promise must be made between suppression of the undesired
frequency bands and the loss in consistency and/or efficiency
of the plant estimates (see Ljung, 1999 for the generalized
output error case). These conflicting demands which are inher-
ent to all time domain methods are avoided by the frequency
domain approach presented in this paper: the plant, signal,
and input/output noise models are identified in the frequency
band(s) of interest only. Note that if the model structure (plant,
signal, and noise models) is valid in a larger frequency band
than the one used for identification, then some information is
lost through the filtering, and the variability of the estimates will
increase. This is valid for both the time and frequency domain
approaches.

Summarized the contributions of this paper are:

1. a (computationally simple) frequency domain Gaussian ML
estimator is developed for the general case of coloured and
mutually independent input/output errors,
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Fig. 1. Open-loop errors-in-variables set up where � = z−1 for discrete-time
systems and � = s for continuous-time systems.

2. the ML estimator can handle DT as well as CT modelling
on (a) part(s) of the unit circle or imaginary axis,

3. a numerically stable Gauss–Newton minimization scheme
of the ML cost function is derived,

4. easy to implement and numerical stable calculation of the
Cramér–Rao (CR) lower bound.

2. Open-loop EIV identification

2.1. EIV stochastic framework

Consider the open-loop setup of Fig. 1

Y (k) = G(�k)U0(k) + NY (k),

U(k) = U0(k) + NU(k) (1)

with U0(k) and Y0(k) = G(�k)U0(k) the true unknown input
and output spectra; G(�) the plant transfer function; NU(k) and
NY (k) the input and output measurement errors; �k = z−1

k =
exp(−j2�fk/fs), with fs the sampling frequency, for DT sys-
tems; �k = sk = j2�fk for CT systems; and k the frequency
index. The input measurement noise NU(k), the output mea-
surement noise NY (k), and the excitation U0(k) are modelled
as ARMA stochastic processes

U0(k) = L(�k)EL(k),

NU(k) = HU(�k)EU(k),

NY (k) = HY (�k)EY (k), (2)

where L(�), HU(�), and HY (�) are the signal, the input noise,
and the output noise transfer functions, respectively; and where
EL(k), EU(k), and EY (k) are the signal, the input, and the
output driving white noise sources, respectively.

Assumption 1 (class of EIV systems).

(1) the input/output data are generated by (1) and (2),
(2) G(�), L(�), HU(�), and HY (�) are rational functions

of � with real coefficients,
(3) EL(k), EU(k), and EY (k) are independent (mutually, and

over the frequency index k), circular complex (E{E2(k)}=
0, with E{ } the expected value, and E=EL, EU , and EY )
normally distributed noise, with zero mean (E{E(k)}=0),
and variances �L, �U , and �Y , respectively,
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