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Abstract

This brief shows how a min–max MPC with bounded additive uncertainties and a quadratic cost function results in a piecewise affine and
continuous control law. Proofs based on properties of the cost function and the optimization problem are given. The boundaries of the regions
in which the state space can be partitioned are also treated. The results are illustrated by an example.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Model predictive control (MPC) is one of the control tech-
niques able to cope with both model uncertainties and con-
straints in an explicit way. There are different approaches for
modelling uncertainties. The approach considered here is that
of bounded additive or global uncertainties (Camacho & Bor-
dóns, 2004); this supposes that all uncertainties can be glob-
alized in a single vector which is added to the 1-step ahead
prediction equation. When bounded uncertainties are consid-
ered explicitly, it would seem that more robust control would
be obtained if the controller minimized the objective function
for the worst-case situation.

Min–max MPC (MMMPC) techniques have been used to
explicitly consider the effect of the uncertainty on the control
law (Campo & Morari, 1987; Casavola, Giannelli, & Mosca,
2000; Veres & Norton, 1993; Lee & Yu, 1997; Kim, Kwon, &
Lee, 1998). However, all of these have a great computational
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burden in common which limits the range of processes to which
they can be applied. When the cost function is based on 1 or
∞ norms the min–max problem can be efficiently solved us-
ing linear programming techniques (Allwright & Papavasilou,
1992). In other works (Kothare, Balakrishnan, & Morari, 1996;
Lu & Arkun, 2000), the computational burden is lessened by
minimizing an upper bound of the worst case instead of explic-
itly solving a min–max problem.

MMMPC controllers can be divided into two types: open-
loop and closed-loop min–max predictive controllers. In the
first type, predictions are computed in an open-loop manner (al-
though the resulting controller is a feedback controller). These
controllers are based on the solution of a single min–max prob-
lem optimizing a single control policy for all possible values
of the uncertainty. Closed-loop min–max predictive controllers
take into account that the control law is actually applied in a
feedback manner when computing the predictions. These con-
trollers employ different strategies such as nested min–max
problems (Bemporad, Borrelli, & Morari, 2003; Lee & Yu,
1997), optimization of multiple control policies (Kerrigan &
Maciejowski, 2004; Scokaert & Mayne, 1998), and, more re-
cently, feasibility constraints (Sakizlis, Kakalis, Dua, & Pis-
tikopoulos, 2004) when minimizing the nominal or expected
cost. Open-loop MMMPC is known to be very conservative,
whereas closed-loop MMMPC is known to suffer from a much
greater computational burden.
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Bemporad et al. (2003) have shown that both open-loop or
closed-loop MMMPC with ∞-norm (or 1-norm) have a piece-
wise affine (PWA) nature. This fact was deduced by the use of
multiparametric programming and it allows explicit solutions
of such control laws. In this brief we show that the constrained
MMMPC control law with a quadratic objective function is also
PWA and continuous. We provide proofs based mainly on the
properties of the cost function and on the optimization problem.
This result can be exploited to implement this type of control
law to processes with fast dynamics. The results presented in
the paper can be applied to open-loop prediction MMMPC or
to MMMPC using a semi-feedback strategy (Mayne, 2001). In
this, some kind of feedback is introduced into the predictions
because the system is pre-controlled using an inner feedback
gain. This technique (Rossiter, Kouvaritakis, & Rice, 1998) is
known to reduce the conservatism of open-loop predictive con-
trollers (Bemporad, 1998; Löfberg, 2003) without having to
increase the computational burden.

The brief is organized as follows: Section 2 presents the
MMMPC strategy, along with some easy properties. Sections
3 and 4 deal with the continuity and PWA nature of the control
law. The boundaries of the regions are treated in Section 5.
Finally, the results presented in this brief are illustrated with an
example in Section 6.

2. Min–max MPC with bounded additive uncertainties

Consider the following state-space model with bounded ad-
ditive uncertainties (Camacho & Bordóns, 2004):

x(t + 1) = Ax(t) + Bu(t) + D�(t), y(t) = Cx(t) (1)

with x(t) ∈ Rdim x , u(t) ∈ Rdim u, �(t) ∈ {� ∈ Rdim � :
‖�‖∞ ��m}, y(t) ∈ Rdim y . Consider a sequence u =
[u(t) . . . u(t + Nu − 1)]T of values of the control signal over
a control horizon Nu and � = [�(t + 1) . . . �(t + N)]T a se-
quence of future values of �(t) over a prediction horizon N .
Furthermore, let J (�, u, x) be a quadratic performance index
of the form:

J (�, u, x) = x(t + N |t, �)TPx(t + N |t, �)

+
N−1∑
j=1

x(t + j |t, �)TQjx(t + j |t, �)

+
Nu−1∑
j=0

u(t + j)TLju(t + j), (2)

where x(t + j |t, �) is the prediction of the state for t + j made
at t when the future values of the uncertainty are supposed
to be given by the sequence �. When Nu < N it is assumed
that the control signal is constant and equal to u(Nu − 1) for
j =Nu, . . . , N . On the other hand P, Qj ∈ Rdim x×dim x , Lj ∈
Rdim u×dim u are symmetric positive definite matrices used as
weighting parameters.

At any time, the state x and the sequence u must satisfy a
set of nc affine constraints, such that only the pairs

(u, x) : RT
i u + �T

i ��gi + F T
i x, i = 1, ..., nc ∀� ∈ � (3)

are admissible, where � = {� ∈ RN ·dim � : ‖�‖∞ ��m}, Ri ∈
R(Nu·dim u), Fi ∈ Rdim x , �i ∈ R(N ·dim �) and gi ∈ R. These
constraints may arise from operational constraints or be used
to guarantee stability. Note that

max
�∈�

�T
i � = max

‖�‖��m

�T
i � = �m‖�i‖1,

where ‖�i‖1 is the 1-norm of �i , i.e., the sum of the abso-
lute value of its components. Thus, the robust fulfillment of the
constraints (3) is satisfied if and only if RT

i u +�m‖�i‖1 �gi +
F T

i x, i = 1, . . . , nc (Alamo, Muñoz de la Peña, Limón Mar-
ruedo, & Camacho, 2005a). Therefore, robust constraint satis-
faction of (3) is guaranteed by considering the following set of
affine constraints:

Ru�c� + Fx, (4)

where matrices R ∈ Rnc×(Nu·dim u) and F ∈ Rnc×dim x are
composed of the row vectors RT

i and F T
i and the ith component

of vector c� ∈ Rnc is given by gi − �m‖�i‖1.
MMMPC (Campo & Morari, 1987) is based on finding the

control correction sequence u that minimizes J (�, u, x) for
the worst possible case of the predicted future evolution of
the process state or output signal. This is accomplished by the
solution of a min–max problem such as

u∗(x) = argmin
u∈U

J ∗(u, x)

s.t. Ru�c� + Fx,
(5)

with

J ∗(u, x) = max
�∈�

J (�, u, x),

where U ⊆ RNu·dim u is compact. Of all possible values of x

only those feasible are considered: that is, those belonging to

K∗ � {x ∈ Rdim x : ∃u ∈ U, Ru�c� + Fx}. (6)

The solution of problem (5) is applied in a feedback manner
using a receding horizon strategy (Camacho & Bordóns, 2004).
Note that J ∗(u, x) is the pointwise maximum of a set of an
infinite number of quadratic cost functions of u and x. Thus,
J ∗(u, x) is a piecewise quadratic function of u and x. Note that
a polytopic terminal constraint devised to provide robust sta-
bility can also be included within the constraints Ru�c� +Fx

(see Mayne, Rawlings, Rao, & Scokaert, 2000 and references
therein). Also a stabilizing terminal cost can also be considered
via a proper choice for matrix P (Mayne et al., 2000).

Problem (5) is of the open-loop type. However, the results
presented in this paper are also valid when using a semi-
feedback approach (Mayne, 2001) in which the control input
is given by u(t) = −Kx(t) + v(t) where the feedback matrix
K is chosen to achieve a certain desired property such as nom-
inal stability or LQR optimality. The MMMPC controller will
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