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Abstract

We consider a class of systems with a cyclic interconnection structure that arises, among other examples, in dynamic models for certain
biochemical reactions. We first show that a “secant” criterion for local stability, derived earlier in the literature, is in fact a necessary and
sufficient condition for diagonal stability of the corresponding class of matrices. We then revisit a recent generalization of this criterion to
output strictly passive systems, and recover the same stability condition using our diagonal stability result as a tool for constructing a Lyapunov
function. Using this procedure for Lyapunov construction we exhibit classes of cyclic systems with sector nonlinearities and characterize their
global stability properties.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper we study systems characterized by a cyclic
interconnection structure as depicted in Fig. 1. An important
example where this structure arises is a sequence of biochemical
reactions where the end product drives the first reaction as
described by the model

�̇1 = − f1(�1) + gn(�n),

�̇2 = − f2(�2) + g1(�1),
...

�̇n = − fn(�n) + gn−1(�n−1). (1)

Tyson and Othmer (1978) and Thron (1991) addressed the sit-
uation where fi(·), i = 1, . . . , n, and gi(·), i = 1, . . . , n− 1 are
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increasing functions and gn(·) is a decreasing function, which
means that the intermediate products “facilitate” the next re-
action while the end product “inhibits” the rate of the first
reaction. To evaluate local stability properties of such reac-
tions Tyson and Othmer (1978) and Thron (1991) analyzed the
Jacobian linearization at the equilibrium, which is of the form

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−�1 0 · · · 0 −�n

�1 −�2
. . . 0

0 �2 −�3
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 �n−1 −�n

⎤
⎥⎥⎥⎥⎥⎥⎦

, �i > 0, �i > 0 (2)

i = 1, . . . , n, and showed that it is Hurwitz if

�1 . . . �n

�1 . . . �n

< sec(�/n)n. (3)

Unlike a small-gain condition which would restrict the right-
hand side of (3) to be 1, criterion (3) also exploits the phase of
the loop and allows the right-hand side to be 8 when n = 3, 4
when n = 4, 2.8854 when n = 5, etc. Furthermore, when �i’s
are equal, (3) is also necessary for stability.
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Fig. 1. A cyclic feedback interconnection of systems H1, . . . , Hn.

The objective of this paper is to extend this stability crite-
rion to classes of nonlinear systems, including (1), by build-
ing on a passivity interpretation presented recently in Sontag
(2006). We first revisit Sontag (2006), which derived an ana-
log of (3) when the blocks in Fig. 1 are output strictly pas-
sive (Sepulchre, Janković, & Kokotović, 1997; van der Schaft,
2000), and recover the same stability result with a Lyapunov
proof that complements the input–output arguments in Sontag
(2006). Our Lyapunov function consists in a weighted sum of
storage functions for each block, with the weights selected ju-
diciously according to a diagonal stability result proved in this
paper for the class of matrices (2). This construction resem-
bles the method of vector Lyapunov functions in the literature
of large-scale systems (Michel & Miller, 1977; Šiljak, 1978),
where a Lyapunov function is assembled from a weighted sum
of several components.

We next study the case where some of the blocks in Fig. 1 are
static sector nonlinearities. When such a nonlinearity is time
invariant and preceded by a linear, first-order, dynamic block
we relax our stability criterion with a special Lyapunov con-
struction that mimics the proof of the Popov criterion (Khalil,
2002). We next apply a similar construction to system (1), and
extend the secant condition (3) to become a criterion for global
asymptotic stability. Our main assumption in this result is that
fi(·)’s and gi(·)’s satisfy a sector property, and that the growth
ratio of gi(·) relative to fi(·) be bounded by a constant that plays
the role of �i/�i in (3). The next result extends this condition
to the case where the state variables are nonnegative quantities
as in biochemical reactions.

The results of this paper previewed above all hinge upon our
key theorem for diagonal stability of (2), presented in Section 2.
Using this theorem, Section 3 studies the cyclic interconnection
in Fig. 1, and gives a procedure for selecting the weights in our
Lyapunov function construction from storage functions. Section
4 derives a Popov-type relaxed stability criterion for static, time-
invariant, sector nonlinearities. Section 5 revisits system (1) and
proves global asymptotic stability. Section 6 extends this result
to systems with nonnegative state variables. An independent
result in Section 7 studies a cascade of output strictly passive
systems, and uses our main theorem on diagonal stability to
prove an input feedforward passivity (IFP) (Sepulchre et al.,
1997) property for the cascade, which quantifies the amount of
feedforward gain required to re-establish passivity.

2. Main theorem for diagonal stability

The key ingredient for all of the results in this paper is The-
orem 1, which states that (3) is a necessary and sufficient con-

dition for diagonal stability of (2). This theorem is of indepen-
dent interest because existing results for diagonal stability of
various classes of matrices, such as those surveyed in Redheffer
(1985) and Kaszkurewicz and Bhaya (2000) do not address the
cyclic structure exhibited by (2). In particular, the sign rever-
sal for �n in (2) rules out the “M-matrix” condition, which is
applicable when all off-diagonal terms are nonnegative.

Theorem 1. The matrix (2) is diagonally stable; that is, it
satisfies

DA + ATD < 0 (4)

for some diagonal matrix D > 0, if and only if (3) holds.

The remaining results of this paper are presented in the form
of corollaries to this theorem. Tyson and Othmer (1978) and
Thron (1991) studied the characteristic polynomial of (2) and
showed that (3) is a sufficient condition for A to be Hurwitz.
They further showed that this condition is also necessary when
�i’s are equal. Theorem 1 proves that (3) is necessary and
sufficient for diagonal stability even when �i’s are not equal.
This means that if A is Hurwitz but (3) fails, then the Lyapunov
inequality ATP + PA < 0 does not admit a diagonal solution.

Proof of Theorem 1. We prove the theorem for the matrix

A0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0 · · · 0 −�1

�2 −1
. . . 0

0 �3 −1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 �n −1

⎤
⎥⎥⎥⎥⎥⎥⎦

(5)

because other matrices of the form (2) can be obtained by
scaling the rows of this A0 by positive constants, which does
not change diagonal stability. Our task is thus to prove necessity
and sufficiency for diagonal stability of the condition

�1 . . . �n < sec(�/n)n, (6)

which is (3) for A0. Necessity follows because the diagonal
entries of A0 are equal, in which case (6) is necessary for A0 to
be Hurwitz (Tyson & Othmer, 1978). To prove that (6) is also
sufficient for diagonal stability, we define

r := (�1...�n)
1/n > 0,

� := diag
{

1, −�2

r
,
�2�3

r2 , . . . , (−1)n+1 �2 . . . �n

rn−1

}
(7)

and note that

−�−1A0� =

⎡
⎢⎢⎢⎢⎢⎣

1 0 · · · 0 (−1)n+1r

r 1
. . . 0

0 r 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 r 1

⎤
⎥⎥⎥⎥⎥⎦ . (8)

Thus, with the choice

D = �−2 (9)
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