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Abstract

We use state-space realizations to solve the spectral and inner–outer factorization problems with respect to the unit disk formulated for
a completely general rational matrix. The algorithm is based on orthogonal transformations and standard reliable procedures for solving
Stein and Riccati equations. The formulas apply in particular to general descriptor systems or polynomial matrices. The main novelty is
that we allow for arbitrary rank, poles and zeros on the unit circle, or at infinity.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Throughout the paper we consider rational matrices with
real coefficients as this is the typical case in control appli-
cations. For ap × m rational matrix�(z) with real coef-
ficients and of the complex variablez we define the para-
Hermitian conjugate (with respect to the unit circle) to be
them×p rational matrix�∗(z)=�T(1/z), where the upper
index T stands for the transpose. A square, rational matrix
� is said to be para-Hermitian if�∗(z) = �(z). A p × m

rational matrix� is called marginally stable if it is analytic
outside the closed unit disk and at infinity, and is called sta-
ble if it is marginally stable and analytic on the unit circle.
We denote the open unit disk and its closure byD andD,
respectively.
It is well-known that anm × m para-Hermitian matrix

� with (normal) rank r has a factorization of the form
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�(z)=�∗(z)�(z) for somer×m rational matrix� if and only
if � is positive semi-definite at almost every point on the unit
circle. Such a factorization is in general non-unique and one
may add additional requirements for the factor�. This basic
result is known asspectral factorizationin the engineering
literature. A standard reference for spectral factorization is
Youla (1961).
In this paper, we deal with a specialized case of this

general spectral factorization problem in which� is pre-
factorized as�(z)=G∗(z)G(z), whereG is a given arbitrary
real rational matrix, and the problem is to compute various
relevant spectral factors (not always of dimensionr × m).
More precisely, we consider the followingspectral factor-
ization problem: Given an arbitrary real rationalp×m ma-
trix G(z) of normal rankr, find a rational matrix�(z), such
that

G∗(z)G(z)= �∗(z)�(z), (1)

where the structural elements of�(z) (poles, zeros, mini-
mal indices, normal rank) must satisfy some additional re-
quirements.�(z) is called a spectral factor and (1) defines
a spectral factorization ofG∗(z)G(z).
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This spectral factorization problem with� of dimension
r ×m is related to another type of factorization

G(z)= �(z)�(z), (2)

where� is requiredp×r isometric (i.e., satisfies�∗(z)�(z)=
I ) and� is the same spectral factor as in (1) required to have
a particular location of poles and/or zeros. In particular, if
G is marginally stable,� is required isometric and stable
and� is required marginally stable then the factorization
(2) is known asinner–outer, � being the inner and� the
outer factors. The two factorization problems (1) and (2)
are strongly connected in the following sense. Let (1) be
a spectral factorization ofG, with � of dimensionr × m.
Then it is easy to check that� := G�# is isometric, where
�# is a right inverse of�, and� together with� define a
factorization (2) ofG. Conversely, if (2) is a factorization
of G with � isometric, then we immediately find that� is a
spectral factor ofG satisfying (1).
There are various constraints that one may impose such

as to customize the spectral factors for various applications
and reduce the class of possible solutions. In electrical en-
gineering most interesting factorizations of type (1) require
� to be (marginally) stable(i.e. analytic outside the closed
unit disk including at infinity) orminimum phase(i.e. of full
row rank outside the closed unit disk including at infinity),
or both, but all can accommodate within the framework in-
troduced in this paper. For example, assumeG is an arbitrary
polynomial matrix. Then the spectral factorization problem
requires a polynomial matrix� of full row rank and having
all zeros inD such that (1) holds. For a detailed treatment
of various factorization problems for linear systems and
operators the reader is referred toFuhrmann (1981).
Spectral factorizations of type (1) appear throughout in

control systems, identification, signal processing, network
and circuit theory (see for exampleLindquist, Michaletzky,
& Picci, 1995; Ferrante, Pavon, & Pinzoni, 2003). Since
many fundamental problems in these branches can be solved
once the spectral factors are known, a wealth of research
efforts has been invested in their construction and finding
their various properties. However, all approaches proposed
so far fail short to effectively construct the spectral factor if
G has not full column rank and has poles/zeros on the unit
circle or at infinity (seeGu, Tsai, O’Young, & Postleth-
waite, 1989; Zhang & Freudenberg, 1992; Katayama, 1996,
and for a historical perspective,Oar̆a & Varga, 2000). One
of the most general methods available for discrete-time
systems can deal withG of arbitrary rank but without
zeros on the unit circle (Ionescu & Oar̆a, 1996; Ionescu,
Oar̆a, & Weiss, 1999). However, if such zeros are present,
semi-stabilizing solutions instead of stabilizing solutions to
Riccati equations have to be computed and this implies a
symmetric separation of the unit circle eigenvalues of the
associated symplectic pencil. Unfortunately, no numerical
method to cope efficiently with this task is available. Other
methods which deal with zeros on the unit disk but apply
for a full row rankGwithout zeros at infinity were proposed

in Van Dooren (1990)andVarga (1998). The most general
solution available so far isDewilde and van der Veen (2000)
where the discrete-time inner–outer factorization problem
is considered in a quite different context of inverting locally
finite systems of equations. InDewilde and van der Veen
(2000)they solve the minimum phase problem with a couple
of restrictions that can be handled only by bilinear transfor-
mations: absence of poles and zeros at infinity and absence
of zeros at zero. However, the overall solution seems to us
as unnecessarily intricate; more on this in Conclusions.
The corresponding inner–outer and spectral factorizations

for continuous-time systems have been recently solved in
Oar̆a and Varga (2000)by using a method of successive
poles/zeros/minimal indices dislocation with all-pass fac-
tors. In this paper, we extend these ideas such as to become
applicable to the peculiarities of the discrete case. In contrast
to the continuous-time case, we have to develop a different
technical machinery that is able to cope with poles and ze-
ros at infinity. A preliminary attempt to apply the same ideas
to the discrete-time case isOar̆a and Varga (1999a). How-
ever, inOar̆a and Varga (1999a)the approach is via some
implicit bilinear transformations which lead unnecessarily
to descriptor realizations of the spectral factor and solutions
to nonstandard Riccati equations.
We report here the genuine discrete-time solution of the

spectral factorization problem with respect to the unit disk
by deriving formulas for the spectral factor in state-space
form. Moreover, we eliminate the implicit recursiveness in
Oar̆a and Varga (2000)and show that once the appropriate
projections are taken, the spectral factor can be written di-
rectly in terms of the solutions to a standard Stein and a
standard Riccati equation. This is done in much similar a
way to what is already well known in the literature in pretty
particular cases. Finally, we work under the most relaxed
possible assumptions on the realization ofG.
Specifically, we give state-space formulas and numerically

reliable procedures to compute the solutions to the spectral
factorization problems (1) and (2) in three cases correspond-
ing to one of the following additional requirements on the
spectral factor:
(MP) � has full row rank outside the closed unit disk

including at infinity (isminimum phase);
(S)� is analytic outside the closed unit disk including at

infinity (is marginally stable);
(SMP) � is analytic and has full row rank outside the

closed unit disk including at infinity (is marginally stable
and minimum phase).
We use terms from the control jargon to name these three

factorization problems by the corresponding feature of the
spectral factor: minimum phase (MP), stable (S), and stable
and minimum phase (SMP).
In order to derive formulas for the spectral factors, we

implicitly make use of the equivalence between (1) and (2).
For example, in the case of the MP factorization� is an
r × m rational matrix having no zeros outside the closed
unit disk, while � is p × r, stable and isometric. Hence
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